

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING

ISSN 2213-3437 on-line access via: www.elsevier.com/locate/jece

Journal of Environmental Chemical Engineering

Aims and Scope:

The **Journal of Environmental Chemical Engineering** (JECE) publishes full length original research papers, short communications, review papers, perspectives and letters to the Editor. Papers are welcome which apply chemical engineering principles to understand important environmental processes or that develop/optimize novel remediation processes.

The Journal of Environmental Chemical Engineering provides a forum for the publication of original research on the development of alternative sustainable technologies focusing on water and wastewater treatment and reuse; treatment, reuse and disposal of waste; pollution prevention; sustainability and environmental safety; recent developments on green chemistry; alternative methods of remediation of environmental accidents including but not limited to oil spills in water bodies and nuclear accidents.

JECE calls for papers that cover the following fields:

Physico-chemical processes:

Adsorption/biosorption, ion exchange, membrane processes, magnetic separation, particle separation, phase separation, multiphase extraction, thermal/evaporative processes

Advanced oxidation processes:

Heterogeneous catalysis, UV/H_2O_2 , Fenton oxidation, ozonation, sonolysis, electrochemical treatment, wet air oxidation

Nanomaterials for environmental and chemical applications:

Adsorbents, catalysts, and nanocomposites

Sustainable technologies:

Water reclamation and reuse, carbon capture, renewable energy and energy recovery, waste minimization, treatment, resource recovery

JECE also covers the following fields:

- Clean synthesis and process technology
- Source control
- Process scale-up and economic analysis
- Process integration and zero liquid discharge technologies
- Resource recovery
- Water-energy nexus
- Anthropogenic activities and environmental sustainability

Editors:

Professor Despo Fatta-Kassinos, University of Cyprus, Dept of Civil and Environmental Engineering, NIREAS-International Water Research Center, P.O.Box 20537, 1678 Nicosia, Cyprus, Tel: +357 22 892275, E-mail: dfatta@ucy.ac.ay

Professor Yunho Lee, Gwangju Institute of Science and Technology, School of Environmental Science and Engineering, Oryong-dong, Buk-gu 123, Gwangju, KOREA, REPUBLIC OF, Tel: 82 (0)62 715 2468, E-mail: yhlee42@gist.ac.kr

Professor Teik-Thye Lim, Nanyang Technological University, Division of Environmental & Water Resources Engineering, Room N1-01b-47, Block N1, 50 Nanyang Avenue, Singapore, 639798, Tel: 6567906933, E-mail: cttlim@ntu.edu.sg

Professor Eder Claudio Lima, Federal University of Rio Grande do Sul, Institute of Chemistry, Av. Bento Goncalves 9500, Postal Box 15003, Porto Alegre, BRAZIL, Tel: +55 (51) 3308 7175, Mobile: +55 (51) 92963570/ 82945656, E-mail: eder.lima@ufrgs.br

Editorial Board Members:

A.R. Cestari Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil R.A. Doong National Tsing Hua University, Hsinchu, Taiwan G.L. Dotto Universidade Federal Do Rio Grande (FURG), Rio Grande, Brazil S. Esplugas University of Barcelona, Barcelona, Spain N. Kreuzinger Technische Universität Wien, Wien, Austria M.C. Tomei Consiglio Nazionale delle Ricerche (CNR), Monterotondo Stazione, Roma, Italy R. Leyva-Ramos Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico C. Manaia Universidade Católica Portuguesa, Porto, Portugal H. Park Kyungpook National University, Daegu, South Korea T.J. Strathmann University of Illinois at Urbana-Champaign, Urbana, IL, USA T. Viraraghavan University of Regina, Regina, SK, Canada

Processed at Thomson Digital, Gangtok (India)

Search all fields		Author name	This Journal/Book	Volume	Issue	Page	Advanced search	
ENVIRONMENTAL CHEMICAL ENGINEERING	Journal of En Supports Open Access	s About this Journal	emical Engineer Sample Issue Online	ing Submit you	ır Article	9		
W. C.	Get new Open Acc Subscribe to new V Add to Favorites Copyright © 2018 Elsevi	ed cess article feed volume alerts er Ltd. All rights reserved						
< Previous vol/iss Ne	xt vol/iss >	Journal of Environmental C Volume 5, Issue 3, Pages 2	hemical Engineering 2083-3064 (June 2017)				No prev art. 1 - 100 of 105 Next ►	
Articles in Press		Purchase	port				All access types	
Open Access articles		Editorial Board						
Volumes 1 - 6 (2013 - Volume 6, Issue 1 In Progress (Februa	2018) ary 2018)	<i>Page i</i> PDF (37 K)						
Volume 5, Issue 6 pp. 5293-6216 (Dec	ember 2017)	Review Articles						
Volume 5, Issue 5 pp. 4185-5292 (Oct	ober 2017)	 Treatment of wastewater by vermifiltration integrated with macrophyte filter: A review Review Article Pages 2274-2289 Kundan Samal, Rajesh Roshan Dash, Puspendu Bhunia Abstract Research highlights Purchase PDF - \$35.95 						
Volume 5, Issue 4 pp. 3065-4184 (Aug	just 2017)							
Volume 5, Issue 3 pp. 2083-3064 (Jun Volume 5, Issue 2 pp. A1-A2, 1321-20 2017) Volume 5, Issue 1 pp. 1-1320 (Februa Volume 4, Issue 4,	e 2017) 82 (April ry 2017) Part B	 Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review Review Article <i>Pages 2395-2414</i> Abreham Tesfaye Besha, Abaynesh Yihdego Gebreyohannes, Ramato Ashu Tufa, Dawit Nega Bekele, Efrem Curcio, Lidietta Giorno Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 						
pp. 4817-4910 (Dec Green Technology and Environment	cember 2016) Innovations for	Research Articles						
Volume 4, Issue 4, pp. 3707-4816 (Dec Volume 4, Issue 3 pp. 2607-3706 (Sep 2016)	Part A æmber 2016) tember	 Electrochemical oxi environmental appli Pages 2083-2089 Nagaraj P. Shetti, Deep Abstract Graph 	dation of erythrosine a Cation Original Research A oti S. Nayak, Girish T. Kuch ical abstract Researc	t TiO ₂ na rticle iinad h highlight	anopar s	ticles mo	odified gold electrode — An se PDF - \$35.95	
pp. 1407-2606 (Jun Volume 4, Issue 1 pp. 1-1406 (March 2	 Highly microporous activated carbons derived from biocollagenic wastes of the leather industry as adsorbents of aromatic organic pollutants in water Original Research Article <i>Pages 2090-2100</i> 							
Volume 3, Issue 4, pp. 2981-3062 (Dec Volume 3, Issue 4, pp. 2255-2880 (Dec	cember 2015) Part A	J. Lladó, R.R. Gil, C. La Abstract Graph content	ao-Luque, M. Solé-Sardans ical abstract Researc	, E. Fuent h highlight	e, B. Ru s │	IZ Purchas	se PDF - \$35.95 Supplementary	
Volume 3, issue 3 pp. 1437-2254 (Sep 2015) Volume 3, issue 2 pp. 603 1426 (Juno	otember	Extraction of biomo solvents Original Rese Pages 2101-2106 Amanda de Sousa e Si	lecules from <i>Spirulina</i> arch Article Iva, Laís Marques Moreira,	<i>platensis</i> Weuller T	s using	non-cor de Magalh	nventional processes and harmless nães, W.R. Lobo Farias, Maria Valderez	

Research highlights Purchase PDF - \$35.95 Abstract Volume 3. Issue 1 pp. 1-602 (March 2015) Tourmaline and biochar for the remediation of acid soil polluted with heavy metals Original Research Volume 2, Issue 4 pp. 1899-2376 (December 2014) Article Pages 2107-2114 Volume 2. Issue 3 Weili Jia, Baolin Wang, Cuiping Wang, Hongwen Sun pp. 1221-1898 (September Abstract Research highlights Purchase PDF - \$35.95 2014) Volume 2 Issue 2 Experimental analysis of the hydrodynamics, flow pattern and wet agglomeration in rotor-stator pp. 765-1220 (June 2014) vortex separators Original Research Article Volume 2. Issue 1 Pages 2115-2127 pp. 1-764 (March 2014) B.A. Oyegbile, M. Hoff, M. Adonadaga, B.O. Oyegbile Volume 1, Issue 4 Abstract Purchase PDF - \$35.95 pp. 629-1384 (December 2013) Volume 1, Issue 3 Novel metal-doped bacteriostatic hybrid clay composites for point-of-use disinfection of water Original pp. 97-628 (September 2013) Research Article Volume 1, Issues 1-2 Pages 2128-2141 Emmanuel I. Unuabonah, Matthew O. Kolawole, Foluso O. Agunbiade, Martins O. Omorogie, Daniel T. Koko, Chidinma pp. 1-96 (June 2013) G. Ugwuja, Leonard E. Ugege, Nicholas E. Oyejide, Christina Günter, Andreas Taubert Graphical abstract Research highlights Purchase PDF - \$35.95 Supplementary Abstract content Modeling of expanded granular sludge bed reactor using artificial neural network Original Research Article Pages 2142-2150 Hu Yi-fan, Yang Chang-zhu, Dan Jin-feng, Pu Wen-hong, Yang Jia-kuang Research highlights Purchase PDF - \$35.95 Supplementary content Abstract □ Biosorptive removal of lead from aqueous solutions onto Taro (Colocasiaesculenta(L.) Schott) as a low cost bioadsorbent: Characterization, equilibria, kinetics and biosorption-mechanism studies Original Research Article Pages 2151-2162 Ganesh Chandra Saha, Md. Ikram Ul Hogue, Mohammad Al Mamun Miah, Rudolf Holze, Didarul Alam Chowdhury, Shahjalal Khandaker, Shahriar Chowdhury Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 Steel pickling rinse water sludge: Concealed formation of Cr(VI) driven by the enhanced oxidation of nitrite Original Research Article Pages 2163-2170 Felix Brück, Andreas Fritzsche, Kai. U. Totsche, Harald Weigand Abstract Graphical abstract Purchase PDF - \$35.95 Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production Original Research Article Pages 2171-2175 Iryanti Fatyasari Nata, Meilana Dharma Putra, Chairul Irawan, Cheng-Kang Lee Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 Cellulase production, simultaneous saccharification and fermentation in a single vessel: A new approach for production of bio-ethanol from mild alkali pre-treated water hyacinth Original Research Article Pages 2176-2181 Madhuri Narra, Jyoti Divecha, Disha Shah, Velmurugan Balasubramanian, Bipin Vyas, Manisha Harijan, Kumud Macwan Abstract Research highlights Purchase PDF - \$35.95 Separation of indium from lead smelting hazardous dust via leaching and solvent extraction Original Research Article Pages 2182-2188 Yuhui Zhang, Bingjie Jin, Baozhong Ma, Xiaoyan Feng Abstract Research highlights Purchase PDF - \$35.95 C Removal of cationic and anionic textile dyes with Moroccan natural phosphate Original Research Article Pages 2189-2199 Hiba Bensalah, Maged F. Bekheet, Saad Alami Younssi, Mohamed Ouammou, Aleksander Gurlo Purchase PDF - \$35.95 Abstract Value adding red mud waste: High performance iron oxide adsorbent for removal of fluoride Original Research Article Pages 2200-2206 Rachel A. Pepper, Sara J. Couperthwaite, Graeme J. Millar Abstract Purchase PDF - \$35.95

A facile synthesis of Fe ₃ O ₄ @SiO ₂ @ZnO with superior photocatalytic performance of 4-	
nitrophenol Original Research Article	
Pages 2207-2213	
Yuelong Qin, Hanbing Zhang, Zhangta Tong, Zhenyu Song, Ninghua Chen	
Synthesis of superparamagnetic Fe_3O_4 nanoparticles coated with green tea polyphenols ar	d their
use for removal of dye pollutant from aqueous solution Original Research Article	
Pages 2214-2221	
K.K. Singh, K.K. Senapati, K.C. Sarma	
Abstract Purchase PDF - \$35.95 Supplementary content	
Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk blochar: Process optimization according with high paper process of formation and philes. According to the standard base for identical s	and
comparison with biochars prepared from wood chips, sewage sludge and hog ide//demonitic	(1
Pages 2222-2231	
Dimitrios Kalderis, Berkant Kayan, Sema Akay, Esra Kulaksız, Belgin Gözmen	
Abstract Purchase PDF - \$35.95	
Dipicrylhydrazine: A versatile visual anions sensor Original Research Article	
Pages 2232-2239 Pragati R. Sharma, Vineet Kumar Soni, Shubham Pandey, Gannat Choudhary, Anand K. Plannally, Rakesh k	Sharma
Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 Supplement	itary
content	
Preparation of magnetic carbon nanotube nanocomposite for enhancing the separation of d	issolved
hydrocarbon from petroleum wastewater Original Research Article	
Pages 2240-2250	
Y.M. Moustafa, A.M. Al-Sabagh, S.A. Younis, Mostafa M.H. Khalili, M.U. Abdel-Salam	
Carbon rod of zinc-carbon primary battery waste as a substrate for CdS and TiO ₂ photocate	alvst laver
for visible light driven photocatalytic hydrogen production Original Research Article	y y -
Pages 2251-2258	
Fitria Rahmawati, Leny Yuliati, Imam S. Alaih, Fatmawati R. Putri	
Abstract Purchase PDF - \$35.95	
Effective removel of lead interview graphene evide MaQ percebuhrid from equation colution	
Effective removal of lead fors using graphene oxide-ingo filation original Basesch Article	1.
Pages 2259-2273	
Sweta Mohan, Vijay Kumar, Devendra Kumar Singh, Syed Hadi Hasan	
Abstract Purchase PDF - \$35.95 Supplementary content	
Statistical modeling, equilibrium and kinetic studies of cadmium ions biosorption from aqueo	ous
Solution using <i>S. filipendula</i> Original Research Article	
Pages 2290-2304 Avushi Verma, Shashi Kumar, Surendra Kumar	
Abstract Close research highlights Purchase PDF - \$35.95	
Highlights	
• Cadmium removal is studied by abundant and low cost brown alga <i>S. filipendula</i> .	
Optimization of process variables is carried out by RSM.	
Evnerimental data followed Pseudo second order kinetic and Redlich-Paterson isotherm models	
 Reusability of biosorbent is checked and the process is thermodynamically feasible. 	
 Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton 	
Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article	
Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article Pages 2305-2312 Anusith Thanapimmetha, Peniit Sripophakun, Suttinada Amat, Maythee Saisrivoot	
 Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article Pages 2305-2312 Anusith Thanapimmetha, Penjit Srinophakun, Suttipada Amat, Maythee Saisriyoot Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 	
Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article Pages 2305-2312 Anusith Thanapimmetha, Penjit Srinophakun, Suttipada Amat, Maythee Saisriyoot Abstract Graphical abstract	
 Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article Pages 2305-2312 Anusith Thanapimmetha, Penjit Srinophakun, Suttipada Amat, Maythee Saisriyoot Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 Comparative study of GO and reduced GO coated graphite electrodes for decolorization of 	acidic
 Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article Pages 2305-2312 Anusith Thanapimmetha, Penjit Srinophakun, Suttipada Amat, Maythee Saisriyoot Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 Comparative study of GO and reduced GO coated graphite electrodes for decolorization of and basic dyes from aqueous solutions through heterogeneous electro-Fenton process Origi 	acidic
 Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article Pages 2305-2312 Anusith Thanapimmetha, Penjit Srinophakun, Suttipada Amat, Maythee Saisriyoot Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 Comparative study of GO and reduced GO coated graphite electrodes for decolorization of and basic dyes from aqueous solutions through heterogeneous electro-Fenton process Origi Research Article 	acidic
 Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article Pages 2305-2312 Anusith Thanapimmetha, Penjit Srinophakun, Suttipada Amat, Maythee Saisriyoot Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 Comparative study of GO and reduced GO coated graphite electrodes for decolorization of and basic dyes from aqueous solutions through heterogeneous electro-Fenton process Origi Research Article Pages 2313-2324 Abdollah Gholami Akerdi, Zahra Es'haobzade, S.H. Bahrami, Mokhter Arami 	acidic
 Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process Original Research Article Pages 2305-2312 Anusith Thanapimmetha, Penjit Srinophakun, Suttipada Amat, Maythee Saisriyoot Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 Comparative study of GO and reduced GO coated graphite electrodes for decolorization of and basic dyes from aqueous solutions through heterogeneous electro-Fenton process Origi Research Article Pages 2313-2324 Abdollah Gholami Akerdi, Zahra Es'haghzade, S.H. Bahrami, Mokhtar Arami Abstract Graphical abstract Research highlights Purchase PDF - \$35.95 	acidic

Development of aminated poly(glycidyl methacrylate) nanosorbent by green gamma radiation for phenol and malathion contaminated wastewater treatment Original Research Article <i>Pages 2325-2336</i>
Sherif A. Younis, Mohamed M. Ghobashy, Mahmoud Samy Abstract Purchase PDF - \$35.95
Enhancement of Ni ²⁺ removal capacity of activated carbons obtained from Mediterranean <i>Ulva</i> <i>lactuca and Systoceira stricta</i> algal species Original Research Article <i>Pages 2337-2345</i>
Fadela Nemchi, Benaouda Bestani, Nouredine Benderdouche, Mostefa Belhakem, Laurent Duclaux Abstract Purchase PDF - \$35.95
Degradation of Linear Alkylbenzene Sulfonate (LAS) by using multi-Contact Glow Discharge Electrolysis (m-CGDE) and Fe ²⁺ ion as catalyst Original Research Article
Pages 2346-2349 Tri Sutanti Budikania, Candra Irawan, Kartini Afriani, Foliatini, Nelson Saksono Abstract Purchase PDF - \$35.95
Influence of copper loading on mesoporous alumina for catalytic NO reduction in the presence of CO Original Research Article Pages 2350-2361
Alchana Patel, Pradeep Shukia, Guan Ting Pan, Siewhui Chong, Victor Rudolph, Zhonghua Zhu Abstract Close research highlights Purchase PDF - \$35.95
Highlights
The active catalyst chemical phase is correlated with the extent of copper metal loading.
 The catalyst activity is determined by small size of copper crystallites. Catalytic site regeneration is linked to ease of charge transfer via active copper ion
 Various forms of TOF's are described and explored to evaluate reaction behaviour.
Chromium removal using adsorptive membranes composed of electrospun plasma-treatedfunctionalized polyethylene terephthalate (PET) with chitosan Original Research ArticlePages 2366-2377Mohammad Khorram, Ahmad Mousavi, Nasir MehranbodAbstractGraphical abstractResearch highlightsPurchase PDF - \$35.95
Optimization of hydrolysis conditions for minimizing ammonia accumulation in two-stage biogas production process using kitchen waste for sustainable process development Original Research Article
Nidhi Sahu, Sharvari Deshmukh, B. Chandrashekhar, Ganesh Sharma, Atya Kapley, R.A. Pandey Abstract Purchase PDF - \$35.95
Characterization of rice husk-based catalyst prepared via conventional and microwave carbonisation Original Research Article Pages 2388-2394
Daila Touhami, Zongyuan Zhu, Winnie Sinan Balan, Jidon Janaun, Stephanie Haywood, S. Zein Abstract Purchase PDF - \$35.95 Supplementary content
Novel air agitated tapered adsorber for crystal violet removal on biomass combustion residue with process optimization using response surface modeling Original Research Article Pages 2415-2430
Sandip Kumar Ghosh, Amitava Bandyopadhyay First page PDF Graphical abstract Research highlights Purchase PDF - \$35.95
Removal of sulfate by fluidized bed crystallization process Original Research Article
Mark Daniel G. de Luna, Diana Pearl M. Rance, Luzvisminda M. Bellotindos, Ming-Chun Lu Abstract Research highlights Purchase PDF - \$35.95
Organic functionalized Fe ₃ O ₄ /RGO nanocomposites for CO ₂ adsorption Original Research Article Pages 2440-2447
G.M. Babu, R. Vinodh, A. Selvamani, K. Prathap Kumar, A. Shakila Parveen, P. Thirukumaran, V.V. Srinivasan, R. Balasubramaniam, V. Ramkumar Abstract Graphical abstract Purchase PDF - \$35.95
Ultrasound-assisted synthesis of PPyCuS@GOPt nanocomposite and investigation of its
electrocatalytic behavior towards photo-hydrogen evolution Original Research Article Pages 2448-2458

```
Habib Ashassi-Sorkhabi, Babak Rezaei-moghadam
     Abstract Graphical abstract Research highlights
                                                               Purchase PDF - $35.95
□ Photocatalytic degradation of food dye by Fe<sub>3</sub>O<sub>4</sub>−TiO<sub>2</sub> nanoparticles in presence of
   peroxymonosulfate: The effect of UV sources Original Research Article
   Pages 2459-2468
   Mohammad Ali Zazouli, Farshid Ghanbari, Maryam Yousefi, Soheila Madihi-Bidgoli
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95
□ Fate and behaviour of the UV filter 3-methylbutyl-(2E)-3-(4-methoxyphenyl)-acrylate (IMC) in
   aqueous solution Original Research Article
   Pages 2469-2479
   A.J.M. Santos, J.C.G. Esteves da Silva
     Abstract
                   Purchase PDF - $35.95 Supplementary content

    Efficient valorisation of palm shell powder to bio-sorbents for copper remediation from aqueous

   solutions Original Research Article
   Pages 2480-2487
   S. Kushwaha, H. Soni, B. Sreedhar, P. Padmaja
     Abstract Graphical abstract Research highlights
                                                               Purchase PDF - $35.95 Supplementary
   content
Removal of toxic fluoride ion from water using low cost ceramic nodules prepared from some locally
   available raw materials of Assam, India Original Research Article
   Pages 2488-2497
   Jitu Saikia, Susmita Sarmah, Tobiul Hussain Ahmed, Paran Jyoti Kalita, Rajib Lochan Goswamee
     Abstract Graphical abstract
                                       Purchase PDF - $35.95 Supplementary content
Ultrasonic extraction method for quantifying bioavailable phosphorus in particulate form Original
   Research Article
   Pages 2498-2507
   Nguyen Minh Ngoc, Takanobu Inoue, Kuriko Yokota
     Abstract Research highlights Purchase PDF - $35.95

    Effects of feed solution pH and draw solution concentration on the performance of phenolic

   compounds removal in forward osmosis process Original Research Article
   Pages 2508-2514
   Xiaohui Zhang, Quangeng Li, Jun Wang, Jie Li, Changwei Zhao, Deyin Hou
     Abstract Research highlights Purchase PDF - $35.95
□ Fabrication of PAN-TCF-hydrazone nanofibers by solution blowing spinning technique: Naked-eye
   colorimetric sensor Original Research Article
   Pages 2515-2523
   Tawfik A. Khattab, Mohamed Rehan, Sherif Abdelmoez Aly, Tamer Hamouda, Karima M. Haggag, Thomas M. Klapötke
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95 Supplementary
   content
Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic
   degradation of toxic chlorpyrifos in water Original Research Article
   Pages 2524-2532
   Therese Marie S. Rosbero, Drexel H. Camacho
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95
Lactic acid production from sugarcane bagasse by an integrated system of lignocellulose
   fractionation, saccharification, fermentation, and ex-situ nanofiltration Original Research Article
   Pages 2533-2541
   Bovornlak Oonkhanond, Woranart Jonglertjunya, Nattawee Srimarut, Prach Bunpachart, Sapon Tantinukul, Norased
   Nasongkla, Chularat Sakdaronnarong
                                         Purchase PDF - $35.95
     Abstract Graphical abstract
Comparing test methods for granular activated carbon for organic micropollutant elimination Original
   Research Article
   Pages 2542-2551
   Jan Freihardt, Martin Jekel, Aki S. Ruhl
                                          Purchase PDF - $35.95 Supplementary content
     Abstract Research highlights
Manganese ores as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping
   with oxygen uncoupling (CLOU) Original Research Article
   Pages 2552-2563
   Sebastian Sundqvist, Nazli Khalilian, Henrik Leion, Tobias Mattisson, Anders Lyngfelt
```

```
Abstract
                    Purchase PDF - $35.95
Chromium (VI) reduction in the nano- or micron-sized iron oxide - Citric acid systems: Kinetics and
   mechanisms Original Research Article
   Pages 2564-2569
   Jiewen Yang, Laiyuan Zhong, Liming Liu
     Abstract Graphical abstract Research highlights
                                                               Purchase PDF - $35.95 Supplementary
   content
C Assessment of phenol wet oxidation on CuO/γ-Al<sub>2</sub>O<sub>3</sub> catalysts: Competition between heterogeneous
   and leached-copper homogeneous reaction paths Original Research Article
   Pages 2570-2578
   Rita R. Zapico, Pablo Marín, Fernando V. Díez, Salvador Ordóñez
     Abstract Graphical abstract
                                        Purchase PDF - $35.95
□ Facile synthesis of N-doped TiO<sub>2</sub> nanoparticles caged in MIL-100(Fe) for photocatalytic degradation
   of organic dyes under visible light irradiation Original Research Article
   Pages 2579-2585
   Jie Huang, Haiyan Song, Chunxia Chen, Yi Yang, Ningdi Xu, Xinzhen Ji, Chunyu Li, Jiang-An You
     Abstract Graphical abstract Research highlights
                                                            Purchase PDF - $35,95
Synthesis, characterization, and photocatalytic activity of N-doped carbonaceous material derived
   from cellulose in textile dye remediation Original Research Article
   Pages 2586-2596
   Bijay P. Chhetri, Dave Soni, Ambar Bahandur RanguMagar, Charlette M. Parnell, Hunter Wayland, Fumiya Watanabe,
   Ganesh Kannarpady, Alexandru S. Biris, Anindya Ghosh
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95 Supplementary
   content
Experimental investigation and modeling of viscosity effect on carbon dioxide absorption using
   sodium hydroxide Original Research Article
   Pages 2597-2604
   Behnam Tirandazi, Ali Yahyaee, Mohsen Kianpour, Shahrokh Shahhosseini
     Abstract Research highlights
                                         Purchase PDF - $35.95
Residual aluminum control for source water with high risk of overproof coagulant residue: A novel
   application of principal component analysis Original Research Article
   Pages 2605-2610
   Min Ma, Junnong Gu, Yuxian Li, Min Wang
     Abstract Graphical abstract Research highlights
                                                               Purchase PDF - $35.95 Supplementary
   content
C Kinetics of extraction and in situ transesterification of oils from spent coffee grounds Original Research
   Article
   Pages 2611-2616
   Vesna Najdanovic-Visak, Florence Yee-Lam Lee, Marcia T. Tavares, Alona Armstrong
                  Purchase PDF - $35.95
     Abstract
Novel magnetic polyvinyl alcohol/laponite RD nanocomposite hydrogels for efficient removal of
   methylene blue Original Research Article
   Pages 2617-2630
   Gholam Reza Mahdavinia, Moslem Soleymani, Mohammad Sabzi, Hamidreza Azimi, Ziba Atlasi
     Abstract Research highlights
                                       Purchase PDF - $35.95 Supplementary content
Gypsum-reinforced zeolite composite for particulate matter reduction from vehicular emissions Original
   Research Article
   Pages 2631-2638
   Melissa May Muñoz-Boado, Eugene B. Caldona
     Abstract Graphical abstract Research highlights
                                                              Purchase PDF - $35.95

    A novel red mud@sucrose based carbon composite: Preparation, characterization and its adsorption

   performance toward methylene blue in aqueous solution Original Research Article
   Pages 2639-2647
   Omer Kazak, Yasin Ramazan Eker, Ilker Akin, Haluk Bingol, Ali Tor
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95 Supplementary
   content
□ MgO nanolayering of Cu<sub>2</sub>O semiconductors enhances photoreactivity: Superoxide radicals
   boost Original Research Article
   Pages 2648-2657
```

```
Quan Wang, Tuo Li, Pengfei Xie, Jiahai Ma
     Abstract Graphical abstract Research highlights
                                                              Purchase PDF - $35.95 Supplementary
   content
Calculation of the periodic steady state of sequencing batch reactors from oxygen uptake rate (OUR)
   measurements in batch tests Original Research Article
   Pages 2658-2667
   Davide Dionisi, Jeremy Z. Matsvimbo, Adamu A. Rasheed
     Abstract Purchase PDF - $35.95
□ Validation of a rapid procedure to determine biofilter performances Original Research Article
   Pages 2668-2680
   Éric Dumont
     Abstract
                 Graphical abstract
                                      Research highlights
                                                              Purchase PDF - $35.95
Efficient oxidative degradation of chlorophenols by using magnetic surface carboxylated Cu<sup>0</sup>/Fe<sub>3</sub>O<sub>4</sub>
   nanocomposites in a wide pH range Original Research Article
   Pages 2681-2690
   Yaobin Ding, Yufeng Ruan, Lihua Zhu, Heqing Tang
     Abstract Graphical abstract Research highlights
                                                              Purchase PDF - $35.95 Supplementary
   content
NaCIO/NaOH soil oxidation for the remediation of two real heavy-metal and petroleum contaminated
   soils Original Research Article
   Pages 2691-2698
   François Picard, Jamal Chaouki
     Abstract Research highlights
                                         Purchase PDF - $35.95
Synthesis of magnetite from iron-rich mine water using sodium carbonate Original Research Article
   Pages 2699-2707
   V. Akinwekomi, J.P. Maree, C. Zvinowanda, V. Masindi
     Abstract Graphical abstract Research highlights
                                                              Purchase PDF - $35.95
Biosorption of Lead (II) onto soda lignin gels extracted from Nypa fruiticans Original Research Article
   Pages 2708-2717
   B.O. Ogunsile, M.O. Bamgboye
     Abstract Graphical abstract
                                        Purchase PDF - $35.95
Competitive adsorption of cadmium and phenol on activated carbon produced from municipal
   sludge Original Research Article
   Pages 2718-2729
   Muhammad H. Al-Malack, Mohammed Dauda
     Abstract
                  Purchase PDF - $35.95 Supplementary content
Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: Degradation of
   alizarin red S dye Original Research Article
   Pages 2730-2739
   Manviri Rani, Uma Shanker, Amit K. Chaurasia
     Abstract Graphical abstract Research highlights
                                                              Purchase PDF - $35.95 Supplementary
   content
Chromium adsorption using waste tire and conditions optimization by response surface
   methodology Original Research Article
   Pages 2740-2751
   Ijaz Ahmad Bhatti, Naseer Ahmad, Nida Igbal, Muhammad Zahid, Munawar Igbal
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95
Evaluation of theoretical and experimental mass transfer limitation in steam reforming of phenol-PET
   waste to hydrogen production over Ni/La-promoted Al2O3 catalyst Original Research Article
   Pages 2752-2760
   Bahador Nabgan, Tuan Amran Tuan Abdullah, Muhammad Tahir, Walid Nabgan, Yahya Gambo, Maryam Ibrahim,
   Ibrahim Saeh, Kamal Moghadamian
     Abstract Graphical abstract
                                      Research highlights Purchase PDF - $35.95
Chelation mode impact of copper(II)-aminosilane complexes immobilized onto graphene oxide as an
   oxidative catalyst Original Research Article
   Pages 2761-2772
   Ali H. Gemeay, Mohamed E. El-Halwagy, Rehab G. El-Sharkawy, Ahmed B. Zaki
     Abstract Graphical abstract Research highlights
                                                            Purchase PDF - $35.95
```

```
Levels, distribution, characterization and ecological risk assessment of heavy metals in road side
   soils and earthworms from urban high traffic areas in Benin metropolis, Southern Nigeria Original
   Research Article
   Pages 2773-2781
   Alex Enuneku, Ekene Biose, Lawrence Ezemonye
                   Purchase PDF - $35.95
     Abstract

    Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review Review

   Article
   Pages 2782-2799
   C. Femina Carolin, P. Senthil Kumar, A. Saravanan, G. Janet Joshiba, Mu. Naushad
     Abstract Purchase PDF - $35.95
Preparation magnetic cassava residue microspheres and its application for Cu(II) adsorption Original
   Research Article
   Pages 2800-2806
   Xinling Xie, Haiwu Xiong, Youquan Zhang, Zhangfa Tong, Anping Liao, Zuzeng Qin
     Abstract Graphical abstract Research highlights
                                                              Purchase PDF - $35.95
Interfacial control of polyHIPE with nano-TiO<sub>2</sub> particles and polyethylenimine toward actual
   application in CO2 capture Original Research Article
   Pages 2807-2814
   Quanyong Wang, Hongjiao Ma, Jian Chen, Zhongjie Du, Jianguo Mi
     Abstract Graphical abstract Research highlights
                                                               Purchase PDF - $35.95 Supplementary
   content

    Malodors adsorption behavior of metal cation incorporated hydroxyapatite Original Research Article

   Pages 2815-2819
   Hiroshi Nishida, Mitsumasa Kimata, Tateaki Ogata, Takahiro Kawai
                   Purchase PDF - $35.95 Supplementary content
     Abstract
Utilization of magnetic nano cobalt ferrite doped Capra aegagrus hircus dung activated carbon
   composite for the adsorption of anionic dyes Original Research Article
   Pages 2820-2829
   K.S. Thangamani, N. Muthulakshmi Andal, E. Ranjith Kumar, M. Saravanabhavan
     Abstract Graphical abstract Research highlights
                                                             Purchase PDF - $35.95 Supplementary
   content
□ In situ transesterification of Chlorella sp. microalgae using LiOH-pumice catalyst Original Research Article
   Pages 2830-2835
   Mark Daniel G. de Luna, Lorenzo Miguel T. Doliente, Alexander L. Ido, Tsair-Wang Chung
     Abstract Graphical abstract Research highlights
                                                              Purchase PDF - $35.95
Adsorption of nitroaniline positional isomers on humic acid-incorporated monolithic cryogel discs:
   Application of ligand-exchange concept Original Research Article
   Pages 2836-2844
   Kadir Şenlik, Orhan Gezici, İdris Guven, Ali Ihsan Pekacar
     Abstract Graphical abstract
                                        Purchase PDF - $35.95
Biodiesel production from Jatropha Curcas oil using strontium-doped CaO/MgO catalyst Original
   Research Article
   Pages 2845-2852
   Kandis Sudsakorn, Surachet Saiwuttikul, Supaphorn Palitsakun, Anusorn Seubsai, Jumras Limtrakul
     Abstract Graphical abstract Research highlights
                                                             Purchase PDF - $35.95 Supplementary
   content
Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from
   waters Original Research Article
   Pages 2853-2860
   Tawfik A. Saleh, Mustafa Tuzen, Ahmet Sari
                                         Purchase PDF - $35.95 Supplementary content
     Abstract Research highlights
Enhanced bioethanol production from different sugarcane bagasse cultivars using co-culture of
   Saccharomyces cerevisiae and Scheffersomyces (Pichia) stipitis Original Research Article
   Pages 2861-2868
   Ingle Santosh, Paradh Ashtavinayak, Dudhane Amol, Patil Sanjay
     Abstract
                   Purchase PDF - $35.95
\Box Quaternary ammonium \beta-cyclodextrin-conjugated magnetic nanoparticles as nano-adsorbents for the
   treatment of dyeing wastewater: Synthesis and adsorption studies Original Research Article
```

```
Pages 2869-2878
   Dan Cai, Tailiang Zhang, Fangjie Zhang, Xuemei Luo
                                      Purchase PDF - $35.95
     Abstract Graphical abstract
Influence of activated carbon surface oxygen functionality on elemental mercury adsorption from
   aqueous solution Original Research Article
   Pages 2879-2885
   Emily K. Faulconer, David W. Mazyck
     Abstract
                   Purchase PDF - $35.95
Degradation of textile wastewater by modified photo-Fenton process: Application of Co(II) adsorbed
   surfactant-modified alumina as heterogeneous catalyst Original Research Article
   Pages 2886-2893
   Prateeksha Mahamallik, Anjali Pal
     Abstract
                  Purchase PDF - $35.95
Occurrence and removal efficiency of pharmaceuticals in an urban wastewater treatment plant: Mass
   balance, fate and consumption assessment Original Research Article
   Pages 2894-2902
   Thomas Thiebault, Mohammed Boussafir, Claude Le Milbeau
     Abstract Research highlights
                                         Purchase PDF - $35.95 Supplementary content
Synthesis and characterization of ZnO micro- and nanostructures grown from recovered ZnO from
   spent alkaline batteries Original Research Article
   Pages 2903-2911
   Teresa Cebriano, Irene García-Díaz, Ana López Fernández, Paloma Fernández, Félix A. López
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95 Supplementary
   content

    Electrochemical synthesis and immobilization of a beadwork-like Prussian Blue on carbon fiber and

   the removal of cesium Original Research Article
   Pages 2912-2920
   Ayano Yamashita, Takahiro Sasaki, Shunitz Tanaka
     Abstract
                   Purchase PDF - $35.95
The potential of using UV photolysis in an aquifer thermal energy storage system to remediate
   groundwater contaminated with chloro ethenes Original Research Article
   Pages 2921-2929
   C.H.M. Hofman-Caris, D.J.H. Harmsen, N. Hartog, T. Nicolaes, L.J.J.M. Janssen, E. Winters-Breur, T.J.S. Keijzer
                  Purchase PDF - $35.95
     Abstract
□ Tuning the charge transition process of Eu<sub>2</sub>O<sub>3</sub> nanorods by coupling with Ag nanoparticles for
   enhanced photocatalytic performance Original Research Article
   Pages 2930-2936
   Tongjun Niu, Pei Zhang, Gang Zheng, lin Liu, Jiatao Deng, Yong Jin, Zhifeng Jiao, Xiaosong Sun
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95 Supplementary
   content
BSA and humic acid separation from aqueous stream using polydopamine coated PVDF
   ultrafiltration membranes Original Research Article
   Pages 2937-2943
   M. Sri Abirami Saraswathi, R. Kausalya, Noel Jacob Kaleekkal, D. Rana, A. Nagendran
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95
Novel biosorbents from almond shells: Characterization and adsorption properties modeling for Cu(II)
   ions from aqueous solutions Original Research Article
   Pages 2944-2954
   Najeh Maaloul, Paula Oulego, Manuel Rendueles, Achraf Ghorbal, Mario Díaz
     Abstract Graphical abstract Purchase PDF - $35.95 Supplementary content
□ Zirconium doped TiO<sub>2</sub> nano-powder via halide free non-aqueous solvent controlled sol-gel
   route Original Research Article
   Pages 2955-2963
   Inderjeet Singh, R. Kumar, Balaji I. Birajdar
     Abstract Graphical abstract Research highlights Purchase PDF - $35.95
Exploitation of novel synthetic bacterial consortia for biodegradation of oily-sludge TPH of Iran gas
   and oil refineries Original Research Article
   Pages 2964-2975
   Javid Gholami-Shiri, Dariush Mowla, Shabnam Dehghani, Payam Setoodeh
```

Abstract Research highlights

Purchase PDF - \$35.95

About ScienceDirect

Remote access Shopping cart Contact and support

Terms and conditions

Privacy policy

Cookies are used by this site. For more information, visit the cookies page.

Copyright © 2018 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V.

SJR Scimago Journal & Country Rank Enter Journal Title, ISSN or Publisher Name

Home

Journal Rankings

Country Rankings

Viz Tools

Help

About Us

Journal of Environmental Chemical Engineering

Country Subject Area and Category Publisher Publication type ISSN Coverage	United Kingdom299Chemical Engineering (miscellaneous) Process Chemistry and TechnologyImage: Chemical Engineering (miscellaneous) TechnologyEnvironmental Science Pollution Waste Management and DisposalImage: Chemical Engineering (miscellaneous) TechnologyElsevier BVJournals221334372013-ongoing	
Quartiles		<
Pollution Pollution Pollution Process Chemistry and Techr Process Chemistry and Techr Process Chemistry and Techr Waste Management and Disp Waste Management and Disp	2014Q22015Q22016Q1nology2014Q2nology2015Q2nology2016Q2nology2014Q2nology2014Q2nology2015Q1nology2015Q1nology2016Q1	
SJR citations come from It measures the average article in a journal, it the global scientific discussion a journal is.	Citations per document	+

Year

2014 2015

2016

SJR 0.596

0.806

0.844

Developed by:

Powered by:

Contents lists available at ScienceDirect

Journal of Environmental Chemical Engineering

journal homepage: www.elsevier.com/locate/jece

Carbon rod of zinc-carbon primary battery waste as a substrate for CdS and TiO_2 photocatalyst layer for visible light driven photocatalytic hydrogen production

Fitria Rahmawati^{a,*}, Leny Yuliati^{b,c}, Imam S. Alaih^a, Fatmawati R. Putri^a

^a Research Group of Solid State & Catalysis, Chemistry Department, Sebelas Maret University, Jl. Ir. Sutami 36 A, Kentingan, Surakarta 57126, Indonesia

^b Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, Indonesia

^c Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

ARTICLE INFO

Keywords: Photocatalytic activity CdS TiO₂ Carbon rod waste Photocatalytic hydrogen production

ABSTRACT

In this research, carbon rod as a solid waste of primary Zinc-Carbon batteries was used as a substrate for CdS and TiO₂ film. The film was deposited by chemical bath deposition with surfactant molecules as linker agent to promote the connection between the semiconductor film and the substrate. Material characterization was conducted to understand the phases content, its surface morphology, the quantum yield (QY) as measured through isopropanol degradation, and then their activity as a photocatalyst for visible light driven photocatalytic hydrogen production. XRD analysis found that the carbon rod waste is a mechanical mixture of amorphous carbon, represented by width broad peak lying between 22 and 25° and graphitic carbon, represented by a strong (002) peak at 26.3° and also a (001) peak at 42.2°. The result shows that CdS/Carbon (CdS/C) has higher photocatalytic activity than the TiO₂/Carbon (TiO₂/C) with the quantum yield value at 380 nm of a photon is 1.651×10^{-3} . Meanwhile, TiO₂/C provide the value of 1.495×10^{-4} . The QY value of CdS/C also higher than TiO₂/C at 450 nm of the light source. The H₂ production which was conducted with CdS/C performs 1.67 times higher than the production with TiO₂/C as a photocatalyst, i.e., 0.369 µmol s⁻¹ g⁻¹. Meanwhile, the H₂ production rate with TiO₂/C is 0.222 µmol s⁻¹ g⁻¹.

1. Introduction

Photocatalytic hydrogen production has received attention due to H_2 is a clean and renewable energy resource [1]. Some different mixed metal oxide semiconductors have been studied as the photocatalyst for hydrogen production [2–5], such as TiO₂ [6–9], SrTiO₃ [10], ZrO₂ [11], Ta₂O₅ [12] and WO₃ [13]. Among of them, titanium dioxide is still the most suitable in consideration of its activity, chemical inertness, low cost and non-toxicity [14,15]. Meanwhile, Cadmium sulfide is an II-VI group of semiconductor that has a wide band gap energy of 2.4 eV. The CdS has been used as an efficient material for solar cell due to its activity under visible light. CdS is a low band-gap semiconductor, that does act as photocatalysts for hydrogen production in aqueous media [16,17]. A CdS based solid solution, i.e., Cd_{0.1}Sn_xZn_{0.9-2x}S, and Cd_{0.1}Zn_{0.9}S are known to have a high photocatalytic activity for hydrogen production under visible light radiation [18]. However, the photocatalytic activity of pure CdS semiconductor material still face some problems such as the adsorption ability of CdS toward the reactant particles, poor photostability, and serious aggregation with each other. The aggregation could reduce their surface area and increase the recombination rate of photogenerated charge carriers, thus leading to a decreased photoactivity [19].

A significant potential of carbonaceous materials according to its absorptivity character is a promising way to overcome the low absorption ability of CdS and TiO₂. It is known that the absorptivity of fullerene attributed to increasing catalytic activity of TiO₂ [20]. Graphene quantum dots as one of the carbonaceous materials known to has the ability on electron transfer reagent anchored on TiO₂ by in situ photo-assisted strategies, and it enhanced photocatalytic H₂ evolution activity in methanol aqueous solution without the noble metal cocatalyst [21]. An ultrafast transfer of photoexcited electrons from CdS to graphene sheet could significantly decrease the recombination rate of the photoexcited electrons and holes in CdS photocatalyst [19]. Graphene also is known as a good support for anchoring well-dispersed CdS, and it efficiently suppresses the aggregation and overgrowth of CdS [19]. Other carbonaceous material, such as graphite oxide also

* Corresponding author. *E-mail addresses:* fitria@mipa.uns.ac.id, rahmawatifitria1@gmail.com (F. Rahmawati).

http://dx.doi.org/10.1016/j.jece.2017.04.032

Received 15 December 2016; Received in revised form 15 April 2017; Accepted 19 April 2017 Available online 21 April 2017 2213-3437/ © 2017 Elsevier Ltd. All rights reserved. provide a good photocatalytic activity when it was intercalated with TiO_2 . The electron transfer between TiO_2 with graphite might inhibit recombination of the excited electrons-holes [22]. Composite of CdS with all carbon form nanocomposite, such as C60, NT, RGO, and solvent-exfoliated graphene, exhibit a quite similar enhancement in the photoactivity over CdS alone if the interfacial contact between carbon and semiconductors in all samples is intimate [23]. Therefore, it has been proven by many researchers that there is a synergistic effect between carbon nanotubes, RGO and also graphene are carbonaceous materials that required a specific method and equipment to synthesize. The production frequently involves the use of toxic chemicals and also the high cost of large-scale production.

In another side, solid waste batteries increase year by year due to high demand on the portable electronic devices. More than 80% of batteries sold in Europe are a primary battery, in which the large majority of primary batteries are alkaline and zinc carbon batteries [25]. Every year around 160,000 tons of consumer batteries enter the European Union [26]. Meanwhile, according to the Environmental Protection Agency (EPA), each year Americans throw away more than three billion batteries, it is comparable to 180,000 tons of batteries, in which more than 86,000 tons of these are single-use alkaline batteries [27]. Many of the components of these batteries could be recycled, avoiding the release of hazardous substances to the environment. These will contribute to the improvement of environment quality. Zinc-carbon battery is a primary or disposable battery in which a carbon rod is inserted into electrolyte mixture and serve as a cathode. The carbon rod is a good electronic conductor with inert properties. An effort to reuse those carbon rod waste became another reason to use it as a substrate in this research, instead of graphene or other well synthesized carbonaceous materials.

2. Methods

2.1. Preparation of carbon disc

The carbon disc that used in this research was prepared from carbon rod extracted from the waste of zinc-carbon primary battery (ABC battery, produced by ABC industry, Indonesia). The carbon rods were cleaned by dipped into ethanol then washed with distilled water and dried at 105 °C in the oven for 1 h. The carbon rod then being sliced into a disc with a thickness of 1 mm and the diameter is 0.8 cm. The discs were cleaned by dipped into ethanol and ultrasonicated for 15 min before then being dried at room and continued with heating at 105 °C to remove humidity. The discs were then kept in a desiccator at room temperature and were weighed gravimetrically until the weight value difference was less than 0.02 mg.

2.2. Preparation of CdS/Carbon (CdS/C)

A 500 mL CdS solution was prepared from 0.1386 g of CdSO₄, 0.1013 g thiourea as precursors and $(NH_4)_2SO_4$ as a complexing agent. The ammonium salt was added to the solution and serves as a buffer. In this solution, the solvent is deionized water. The carbon disc was dipped into the CdS solution. Each tablet was dipped four times for 15 min for each dipping and under 70 °C condition, as it was optimized by our previous research [28]. The prepared CdS/C discs were also gravimetrically weighed as it was done for carbon disc.

2.3. Preparation of TiO₂/Carbon (TiO₂/C)

Meanwhile, TiO₂/C was also prepared by dipping the carbon disc into the synthesis solution that consists of 1.1 g TiCl₄ in a 100 mL of 1 M HCl and added with 0.583 g of CTAB. The process was conducting for four days under 60 °C. The green prepared discs were then cleaned and heated at 450 °C for 4 h. The prepared TiO₂/C were then gravimetrically weighed as it was done for carbon disc.

2.4. Material characterization and photocatalytic activity test

The prepared materials then were analyzed by X-ray diffraction (Shimadzu, Japan), a high-resolution UV–vis Spectrophotometer (UV 1700 Pharmaspec, Shimadzu, Japan) for diffuse-reflection analysis, and continued to Tauc plots analysis to determine their band gap energy.

Ouantum vield (OY) of the prepared materials was measured as their activity on isopropanol degradation. A photocatalyst tablet with a diameter of 0.8 cm was into 4 mL of 2.5 M isopropanol solution in a cuvette, and then the cuvette was installed in the sample holder of UV-vis spectrophotometer (single-beam UV-vis mini 1240 spectrophotometer, Kasugawa, Shimazu, Japan). The cuvette is a quartz box, which is usually used for UV-vis spectrophotometer analysis. The width of the cuvette is 1.2 cm, length of 1.2 cm, and a tall of 4.5 cm. The volume of isopropanol solution was 40 mL, therefore due to a small volume and homogeneous phase of isopropanol, in this research, the degradation was conducted without stirring. After isopropanol solution had poured into the cuvette, then the spectrophotometer was tuned into the photometric menu, and the sample was irradiated by UV (380 nm of wavelength) and visible wavelength (450 nm and 517 nm for CdS/C). Radiation was conducted for 90 min, and the absorbance data was recorded in every 30 min. The QY value was calculated based on Eq. (1) [29].

$$QY = \frac{N_{mol}(mol. s^{-1})}{N_{photon}(molEinstein. s^{-1})}$$
(1)

 N_{mol} is the number of isopropanol molecules transformed into a product, or the number of product formed during degradation. Meanwhile, N_{photon} is the number of photons absorbed by a photocatalyst material as measured by UV–vis diffuse reflectance spectroscopy.

To understand the contribution of the carbon disc to the degradation activity, this research also compared the catalytic performance of CdS film when the substrate is a glass (a quartz glass). Therefore, the CdS photocatalyst was compared in the same form i.e., the CdS film.

2.5. Photocatalytic hydrogen production test

The photocatalytic test was conducted in a Pyrex flask equipped with water condenser to keep the temperature of the reaction. The ambient temperature was 25.5 °C (298.65 K), the reaction temperature was 31.0 °C (304.15 K), and the ambient pressure was 1003 mbar (0.9899 atm). The prepared catalyst tablets with a mass of 0.0633 g were poured into 50 mL 0.35 M Na₂SO₃ solution and 50 mL of 0.25 M Na₂S solution, and it was stirred during the reaction. Nitrogen gas flowed into the flask for 30 min before the reaction started. Meanwhile, a 500-W mercury lamp (UV wavelength) was used as a photon source for 5 h of radiation time. The produced gas then analyzed by Thermal Conductivity Detector-Gas Chromatography (TCD-GC) to ensure the presence of hydrogen gas and then the quantity was determined by the volumetric method. The injection of produced gas was conducted at every 1 h. The rate of hydrogen production (μ mol s⁻¹ g⁻¹) was calculated for each catalyst to understanding the photocatalytic activity on H₂ production.

3. Result and discussion

Morphological analysis by Scanning Electron Microscope (SEM, JEOL JSM-6510, Germany) resulted in images as described in Fig. 1. The carbon disc shows a rough and non-homogeneous surface morphology (Fig. 1(a)). However, it became smooth and more homogenous after CdS deposition, as well as after TiO₂ deposition. CdS were deposited as flakes (Fig. 1(b) insert). Meanwhile, TiO₂ was deposited as small spheres with the size of less than 200 μ m.

Fig. 1. SEM images of (a) graphite and (b) CdS/Graphite with CdS/Graphite photograph and the image at 10,000 magnification are inserted and (c) TiO₂/Graphite with TiO₂/Graphite photograph and the image at 10,000 magnification are inserted.

Fig. 2. The diffraction pattern of TiO_2/C and CdS/C. The TiO_2 layer consists of rutile, R, and anatase, A, phases. The O signs refer to CTAB peaks, C refers to carbon peaks.

X-ray diffraction pattern shows that TiO_2 present as rutile phase (Fig. 2), meanwhile a peak of graphitic carbon appears at 26.3°, as a strong and sharp peak of (002) plane [30]. A sharp peak at 44° also identified as graphitic carbon with (100) plane [31]. A peak at 20 of 77.80° is identified as characteristic graphite peak based on the standard diffraction of graphite ICSD #28417. A broad peak with a width greater than 0.5°, that lying between 22 and 25° is considered as amorphous carbon [30]. Meanwhile, peaks at 20 of 21.32° and 24.04° are CTAB peaks as confirmed by standard diffraction of JCPDS #48-2454 proof that the highest content of carbon rod waste is the carbon element supported by EDX analysis result as described in Fig. 3. The second dominant element is an oxygen atom that could be coming from graphitic oxide or other metal oxide or alkaline oxide as they were detected as trace elements (Fig. 3).

XRD pattern of CdS/C present peaks of CdS at 26.6° and a peak at 2θ

of 55° as it is confirmed by the standard diffraction of CdS ICSD# 81925 (Fig. 4). The presence of CdS also shows by EDX analysis which detected at 0.02% (Fig. 5) and also shows by elemental mapping as described in Fig. 6, that confirm the presence of CdS on the carbon substrate. Data of weight change after CdS and TiO₂ deposition are listed in Table 1. Meanwhile, the EDX result of TiO₂/C shows an incorporation of TiO₂ on carbon substrate (Fig. 7).

Tauc plot of reflectance data is in Fig. 8. The Tauc plot direct transition of CdS/C (Fig. 8(a)), shows that the gap energy of CdS/C 2.39 eV. It is in agreement with the gap energy of CdS, i.e. 2.4 eV [16]. Meanwhile, the energy gap of TiO₂/C is 3.05 eV (Fig. 8(b)). It is in agreement with the previous research and also implies that in TiO₂/C, rutile phase has a dominant role in the photocatalytic process [29].

This research tried to ensure the contribution of carbon substrate into the photo-catalytic activity of CdS film by conducting a photocatalytic activity test to a CdS/glass and CdS/C with isopropanol molecules as the degradation target. The preparation and geometry of the CdS/glass itself were precisely similar to the CdS/C. The photocatalytic test was conducted under UV (380 nm) and visible (450 nm) light. The results are in Fig. 9.

Fig. 9 shows that the degradation product is similar, shown by a new peak at 225–227 nm. The peak is indicated as a ketone functional group, as it was stated by Kumar (2006) [32] that ketone functional group shows an electronic transition of $\pi \rightarrow \pi^*$ at 180–195 nm. The peak will shift to longer wavelength in a more polar solvent. In this research, the solvent is water, a polar solvent, therefore the peaks are shifted to longer wavelength. When a UV wavelength of 380 nm irradiated the samples, the result shows that the degradation product is larger in the degradation system with CdS/glass as a photocatalyst, than in the system with CdS/C as a photocatalyst. It is known that silica has band gap energy, Eg of 8.7 \pm 0.05 eV [33]. The value is high and requires high energy photon, at least ~142.5 nm to initiate an electronic transition. Therefore, when the UV light at 380 nm irradiated the CdS/glass, only CdS that undergo electron excitation, and the empty

Element	С	0	Na	Al	Si	S	Cl	Mn	Fe	Total
KeV	0.277	0.525	1.041	1.486	1.739	2.307	2.621	5.894	6.398	
Mass%	85.22	11.90	0.20	0.33	0.50	0.42	0.25	0.86	0.31	100.00
Atom%	89.59	9.39	0.11	0.15	0.23	0.17	0.09	0.20	0.07	100.00

Fig. 3. EDX result on the carbon rod waste and the table of element content.

Fig. 4. XRD pattern of CdS/C compared to the standard diffraction of CdS ICSD #81925. The black circle is indicated as CdS peaks. Meanwhile C refers to carbon peaks.

silica glass conduction band may serve as the electron receiver and reduce the possibility of electron-hole recombination. Meanwhile, the graphite substrate with amorphous carbon content inside is known to has a peak at around 4.0–5.0 eV (Fig. 8), which correlates to the light wavelength of 310–248 nm. Those peaks may contribute to the $\pi \rightarrow \pi^*$ transition. Graphite has an aromatic hydrocarbon compound containing benzene rings in its structure with the large delocalized orbitals around the benzene rings. Some $\pi \rightarrow \pi^*$ transitions are possible from the singlet ground state to the singlet excited states. The optical absorption spectrum of graphite at visible range from 0 up to 5 eV originates from transition among π bands [34]. A calculation by Johnson and Dresselhaus [35] on the π bands in graphite, which were determined by McClure parameters along with the addition of in-plane neighbor's interactions, resulted in the allowed optical transitions near 5 eV. Interaction with CdS allows coupling mechanism that causes the absorption edge of the carbonaceous peak drop to the same point on the energy axis with the absorption edge of CdS peak (Fig. 8). Such interaction indicates that the carbonaceous substrate also active when the UV light used as a source, and it allows the conduction band of the substrate were not available to be the electrons receiver and contribute to the reducing of electron-hole recombination.

Element	С	0	Al	Si	S	Ca	Fe	Cd
KeV	0.277	0.525	1.486	1.739	2.307	3.690	6.398	3.132
Mass%	87.99	9.61	0.59	0.88	0.27	0.17	0.48	0.02
Atom%	91.56	7.51	0.27	0.39	0.10	0.05	0.11	0.00

Fig. 5. The EDX result of CdS/C and its elemental content.

Fig. 6. The Cd and S mapping on CdS/C, black circle shows a high presence of Cd based on its red color. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1 Weight of the initial carbon disc and the weight after the chemical bath deposition of CdS and TiO₂.

No.	Materials	The weight of C at initial (g)	Weight of CdS/C or TiO ₂ /C (g)	Weight of CdS or TiO_2 (g)
1.	CdS/C	0.109 0.103 0.087	0.122 0.111 0.091 Average (g)	0.013 0.008 0.004 0.008 ± 0.003
2.	TiO ₂ /C	0.124 0.118 0.087	0.131 0.127 0.094 Average (g)	$\begin{array}{l} 0.007 \\ 0.009 \\ 0.007 \\ 0.008 \ \pm \ 0.0005 \end{array}$

A different result shows in Fig. 9(b) when the visible light of 450 nm was used as a photon source. In fact, the photon energy is insufficient to initiate an electronic excitation in the carbonaceous substrate, and allows the substrate to become a good electron sink to reduce the possibility of electron-hole recombination. Silica glass, whether the amorphous or crystalline phase is optically transparent to the optical energy of 0–5 eV [36]. It may allow large of photon past the CdS/glass without any photocatalytic mechanism to occur. Meanwhile, the carbonaceous substrate is not transparent optically and therefore can hold the photon to stay in the material and increase the possibility to be used by CdS to excite the electrons from valence band to conduction band. Therefore, it will be an advantage for carbonaceous substrate when the degradation proceeds with visible light as energy source. In addition, carbonaceous substrate is known as a good conductor that will allows them to be used in a photo-electro-assisted degradation system.

Photocatalytic activity test on isopropanol degradation with CdS/C and TiO₂/C as a catalyst also shows a new peak at 225–227 nm (Fig. 10). The absorbance at 225–227 nm is higher when CdS/C was used as photocatalyst than the absorbance when TiO₂/C was used under both radiation of 450 nm and 380 nm. In Fig. 10(a) the absorbance of

the solution after being treated with CdS/C is over 1.0 when it was radiated by a high UV light energy. It is probably an indication of the photocatalyst layer exuviation which did not occur for TiO₂/C. The CdS exuviation is probably also occurred when the substrate is a silica glass, shown by a high absorbance over 1.0 (Fig. 9). It needs a further investigation regarding the quality of film attachment. However, this fact seems to do not affect the photocatalytic activity of the CdS/C, as it is found to be higher that TiO₂/C and the hydrogen production test also found the same conclusion. The activity is confirmed by the quantum yield, QY, values as listed in Table 2.

Under Ultraviolet radiation (380 nm), TiO₂/C has higher photon absorption in every second. However, the mole number of the product in every second (mole.s⁻¹) that is represented by absorbance value at 225-227 nm, is lower than the mole number of product in every second (mole $\rm s^{-1})$ when the photodegradation proceed with CdS/C as the photocatalyst. Therefore, the QY value as calculated by Eq. (1) of TiO₂/ C is lower than CdS/C at UV light radiation. The conduction band (CB) potential of CdS which is in a higher position of carbon allows migration of the excited electrons from the conduction band of CdS to the conduction band of carbon. The CB potential of CdS is -0.52 V (vs. NHE). Meanwhile, the CB potential of graphene as an allotrope of carbon is -0.11 to (-0.30) Volt (vs. NHE) [37]. Those CB potential position is leading thermodynamically to transfer photogenerated electrons from CdS to the carbon-based substrate. The intimate contact between CdS-carbon as well as the capability of carbon on capturing electrons further reduce the recombination of photogenerated electronhole, and degradation reaction may proceed well. The lower bandgap of CdS, 2.39 eV, seem to increase the ability of an electron to excite from valence to conduction band, in comparison to the TiO₂ case, due to the higher band gap of TiO₂, 3.05 eV. Therefore, with the same substrate that can reduce recombination phenomena, the degradation seem to proceed faster and more efficient when CdS-Carbon as a couple than TiO₂-carbon as a couple.

This research provides Quantum Yield value as the parameter for

Element	С	0	Ti	Cu	Zn
KeV	0.277	0.525	4.508	8.040	8.630
Mass%	35.71	42.60	20.28	0.93	0.48
Atom%	48.89	43.79	6.96	0.24	0.12

Fig. 7. EDX result of TiO₂/C and its elemental content.

Fig. 9. The absorbance of the degraded isopropanol solution with CdS/C and CdS/glass after irradiation for 60 min with (a) UV light (380 nm) and (b) visible light (450 nm).

0.0

200

250

300

350 400

wavelength (nm)

photocatalytic activity that confirms the production of degradation resulted in a second when the catalyst received photon in every second. This QY value is reliable for analysis of a fast photocatalytic degradation process, such as in this research in which the degradation was conducted for 90 min only. Other research in isopropanol degradation

200 250 300

350

wavelength (nm)

400

450

500

found that a further degradation occurs after the degradation proceeds for 5 h. The product of isopropanol degradation was propanone and acetaldehyde, and they undergo further degradation to CO2. However, the CO₂ product was found only in a gas- solid system, in which the isopropanol to be degraded is in a gas phase. Further degradation to

450

500

Fig. 10. UV-vis spectrum of isopropanol solution after degradation for 60 min with CdS/C (a) and with TiO₂/C (b) under various wavelength light.

 $\begin{array}{l} \textbf{Table 2} \\ \textbf{Quantum Yield of CdS/C and TiO_2/C at a various wavelength of radiation light for isopropanol degradation.} \end{array}$

Materials	Wavelength (nm)	N _{mol} (mol/s)	N _{photon} (mol photon/s)	Quantum Yield	Relative QY
CdS/C	380 450	5.302×10^{-5} 5.299×10^{-5}	$\begin{array}{l} 3.21 \times 10^{-2} \\ 5.89 \times 10^{-2} \end{array}$	$1.651 imes 10^{-3} \\ 9.004 imes 10^{-4}$	11.05 6.03
TiO ₂ /C	517 380	3.227×10^{-5} 3.303×10^{-5}	5.89×10^{-2} 2.21 × 10 ⁻¹	5.478×10^{-4} 1.495×10^{-4}	3.67 1.00
	450	0	4.23×10^{-4}	0	0

Fig. 11. The quantity of hydrogen production with CdS/C and TiO_2/C as photocatalyst.

CO₂ does not occur for the liquid-solid system [38].

A higher photocatalytic activity also occurred under visible light radiation. In which, it is clear that TiO_2 with high energy band gap, 3.05 eV, is not active in visible light because the energy of a photon is not sufficient to excite the electrons from valence band to conduction band. Even though, the photons were absorbed, as can be seen in Table 2. However, the photon is not active photo-catalytically. Instead of the TiO_2 layer, the carbon or graphitic carbon itself can absorb light and use it for $\pi \to \pi^*$ transition[35]. Therefore, the number of photon absorption might also serve as a contribution of the carbon substrate.

In term of photocatalytic activity for H₂ production, the hydrogen production rate with CdS/C is 1.67 times higher than the H₂ production rate with TiO₂/Graphite. The hydrogen production rate with CdS/C is 0.369 μ mol s⁻¹ g⁻¹. Meanwhile, the rate with TiO₂/C is 0.222 μ mol s⁻¹ g⁻¹. The curve of H₂ production with CdS/C and TiO₂/C are described in Fig. 11. The remarkable CdS performance also found when the nanotube TiO₂ (TiO₂NTs) was incorporated by CdS nanoparticle[23]. Meanwhile, photocatalytic hydrogen production with

 TiO_2 P25 powder produces rate of 3.04 µmol s⁻¹ g⁻¹ [1]. CdS can serve as a photosensitizer and the active photocatalyst itself. The mercury lamp that was used in this hydrogen production has a wavelength range between visible – ultraviolet light. The lines are 184.45 nm (UV-C), 253.7 (UV-C), 365.4 (UV-A), 404.7, 435.8, 546.1, and 578.2 (visible light). The CdS/C is known to active under ultraviolet and visible light (450 nm–517 nm) with QY values larger than TiO₂/C on that two kinds of light.

4. Conclusion

CdS/C has a higher photocatalytic activity that allows higher H₂ production than TiO₂/C whether under UV or visible light radiation. The QY value of CdS/C under UV light of 380 nm is 1.651×10^{-3} . It is 11.05 times of QY of TiO₂/C, i.e. 1.495×10^{-4} . Meanwhile, under visible light radiation, CdS/C shows photocatalytic activity with QY of 9.004×10^{-4} , in which TiO₂/C is inactive. The hydrogen production rate with CdS/C is 1.67 times higher than the H₂ production rate with TiO₂/C. The hydrogen production rate with CdS/C is $\begin{array}{cccc} 0.369 \ \mu\text{mol} \ s^{-1} \ g^{-1}. \\ 0.222 \ \mu\text{mol} \ s^{-1} \ g^{-1}. \end{array}$ Meanwhile, the rate with TiO_2/C is

Acknowledgement

Authors thank Sebelas Maret University, Indonesia for funding this research under Hibah Mandatory program 2016.

References

- G.L. Chiarello, E. Selli, L. Forni, Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO₂ and Au/TiO₂, Appl. Catal. B: Environ. 84 (2008) 332–339.
- [2] Z. Zou, J. Ye, K. Sayama, H. Arawa, Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M = Mn, Fe, Co Ni, and Cu) photocatalysts, J. Photochem. Photobiol. A: Chem. 148 (1–3) (2002) 65–69.
- [3] R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, Development of new photocatalytic water splitting into H₂ and O₂ using two different semiconductor photocatalysts and a shuttle redox mediator IO³⁻/I⁻, J. Phys. Chem. B 109 (33) (2005) 16052–16061, http://dx.doi.org/10.1021/jp0528481.
- [4] W. Yao, J. Ye, Photocatalytic properties of a new photocatalyst K₂Sr_{1.5}Ta₃O₁₀, Chem. Phys. Lett. 435 (1–3) (2007) 96–99, http://dx.doi.org/10.1016/j.cplett. 2006.12.047 2007.
- [5] H. Kato, A. Kudo, Photocatalytic water splitting into H₂ and O₂ over various tantalate photocatalysts, Catal. Today 78 (1–4) (2003) 561–569, http://dx.doi.org/

F. Rahmawati et al.

10.1016/S0920-5861(02)00355-3.

- [6] J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, Titanium dioxide for solarhydrogen I. Functional properties, Int. J. Hydrogen Energy 32 (14) (2007) 2609–2629, http://dx.doi.org/10.1016/j.ijhydene.2006.09.004.
- [7] M. Hepel, Nanocrystalline structure and nanopore formation in modified thermal TiO2 films, Int. J. Hydrogen Energy 32 (14) (2007) 2693–2702, http://dx.doi.org/ 10.1016/j.ijhydene.2006.09.025.
- [8] A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, The efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy 31 (14) (2006) 1999–2017, http://dx.doi.org/10.1016/j.ijhydene.2006.01. 014.
- [9] S.S. Rayalu, N. Dubey, N.K. Labhsetwar, S. Kagne, S. Devotta, UV and visibly active photocatalysts for water splitting reaction, Int. J. Hydrogen Energy 32 (14) (2007) 2776–2783, http://dx.doi.org/10.1016/j.ijhydene.2007.03.028.
- [10] M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential, J. Am. Chem. Soc. 98 (10) (1976) 2774–2779, http://dx.doi.org/10.1021/ja00426a017.
- [11] S.H. Liu, H.P. Wang, Photocatalytic generation of hydrogen on Zr-MCM-41, Int. J. Hydrogen Energy 27 (9) (2002) 859–862, http://dx.doi.org/10.1016/S0360-3199(01)00190-2.
- [12] K. Sayama, H. Arakawa, Effect of Na2CO3 addition on the photocatalytic decomposition of liquid water over various semiconductor catalysis, J. Photochem. Photobiol. A Chem. 77 (2–3) (1994) 243–247, http://dx.doi.org/10.1016/1010-6030(94)80049-9.
- [13] A. Hameed, M.A. Gondal, Z.H. Yamani, Effect of transition metal doping on photocatalytic activity of WO₃ for water splitting under laser illumination: role of 3d-orbitals, Catal. Commun. 5 (11) (2004) 715–719, http://dx.doi.org/10.1016/j. catcom.2004.09.002.
- [14] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalyticwater-splitting using TiO₂ for hydrogen production, Renew. Sustain. Energy Rev. 11 (2007) 401, http://dx.doi.org/10.1016/j.rser.2005.01.009.
- [15] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C 1 (1) (2000) 1–21, http://dx.doi.org/10.1016/s1389-5567(00) 00002-2.
- [16] T. Dhandayuthapani, M. Girish, R. Sivakumar, C. Sanjeeviraja, R. Gopalakrishnan, Tuning the Morphology of Metastable MnS Films bySimple Chemical Bath Deposition Technique, App. Surf. Sci. 353 (2015) 449–458, http://dx.doi.org/10. 1016/j.apsusc.2015.06.154.
- [17] M. Ashokkumar, An overview of semiconductor particulate systems for photoproduction of hydrogen, Int. J. Hydrogen Energy 23 (1998) 427, http://dx.doi.org/ 10.1016/S0360-3199(97)00103-1.
- [18] M. Sathish, R.P. Viswanath, Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: effect of particle size, noble metal, and support, Catal. Today 129 (2007) 421–427, http://dx.doi.org/10.1016/j.cattod.2006.12.008.
- [19] M. Kimi, L. Yuliati, M. Shamsuddin, Photocatalytic hydrogen production under visible light over Cd0. 1SnxZn0. 9-2xS solid solution photocatalysts, Int. J.

Hydrogen Energy 36 (2011) 9453-9461, http://dx.doi.org/10.1016/j.ijhydene. 2011.05.044.

- [20] J. Sabate, S. Cervera-March, R. Simarro, J. Gimenez, Photocatalytic production of hydrogen from sulfide and sulfite waste streams: a kinetic model for reactions occurring in illuminating suspensions of CdS, Chem. Eng. Sci. 45 (10) (1990) 3089–3096, http://dx.doi.org/10.1016/0009-2509(90)80055-J.
- [21] E. Regulska, J. Karpinska, Investigation of photocatalytic activity of C60/TiO₂ nanocomposites produced by evaporation drying method, Pol. J. Environ. Stud. 23 (6) (2014) 2175–2182.
- [22] X. Hao, Z. Jin, J. Xu, S. Min, G. Lu, Functionalization of TiO₂ with graphene quantum dots for efficient photocatalytic hydrogen evolution, Superlattices Microstruct. 94 (2016) 237–244.
- [23] H. Yunqiu, W. Ruihua, W. Jingjing, X. Qinghong, Microstructure evolution of graphite intercalated by TiO₂ and its photocatalytic activity, J. Wuhan Univ. Technol. Mater. Sci. 24 (2) (2009) 223–228.
- [24] X. Hao, Z. Jin, J. Xu, S. Min, G. Lu, Functionalization of TiO₂ with graphene quantum dots for efficient photocatalytic hydrogen evolution, Superlattices Microstruct. 94 (2016) 237–244. 2016.
- [25] J. Lang, V. Majetka, Graphite/Titanium dioxide composite, Proceeding of NANOCON 2013, October 16–18, 2013, Brno, Czech Republic, European Union, 2013.
- [26] www.epbaeurope-net/whatis.html, Accessed on 10 October, 2016.
- [27] http://ec.europa.eu/environment/waste, Accessed on 11 October, 2016.
 [28] http://everyday-green.com/html/battery_statistic.html, Accessed on 10 October, 2016
- [29] F. Rahmawati, R. Wulandari, E. Nofaris, Mudjijono, Optical properties and photocatalytic activity of CdS-TiO₂/graphite composite, Sci. Eng. Compos. Mater. 24 (2) (2017) 253–260.
- [30] P.L. Walker, J.F. Rakszamski, A.F. Annington, X-ray diffraction studies of a graphitized carbon, ASTM Bull. 208 (1955) 52–54.
- [31] C.H. Kim, T. Oh, Graphitic mesostructured carbon from an aliphatic hydrocarbon precursor, Bull. Korean Chem. Soc. 30 (9) (2009) 1978–1980.
- [32] S. Kumar, Organic Chemistry: Spectroscopy of Organic Compounds, Department of Chemistry, Guru Nanak Dev University, Amritsar, 2006, pp. 1–36.
- [33] J.D. Jorgensen, Compression mechanisms in α -quartz structures—SiO₂ and GeO₂, J. Appl. Phys. 49 (11) (1978) 5473–5478.
- [34] P.E. Trevisanutto, M. Holzmann, M. Côté, V.1 Olevano, Ab initio high-energy excitonic effects in graphite and graphene, Phys. Rev. B 81 (12) (2010) 121405.
- [35] L.G. Johnson, G. Dresselhaus, Optical properties of graphite, Phys. Rev. B 7 (1973) 2275–2285.
- [36] S.S. Nekrashevic, V.A. Gritsenko, Electronic structure of silicon dioxide (A review), Phys. Solid State 56 (2) (2013) 207–222.
- [37] X. Li, S. Wageh, A.A. Al-Ghamdi, CdS/Graphene nanocomposite photocatalysts, Adv. Energy. Mater 1500010 (2015) 1–28.
- [38] G. Marci, E. García-López, G. Mele, L. Palmisano, G. Dyrda, R. Slota, Comparison of the photocatalytic degradation of 2-propanol in gas-solid and liquid-solid systems by using TiO₂-LnPc₂ hybrid powders, Catal. Today 143 (2009) 203–210.