12th Joint Conference on Chemistr

JNNES

Organized by:

Certificale of Appreciation

No. /JCC12/Kimia.UNNES/2017

this certify that Leny Yuliati

Presented a paper titled

Effect of Preparation Methods on the Activity of Titanium Dioxide-Carbon Nitride Composites for Photocatalytic Degradation of Salicylic Acid

> at the 12th Joint Conference on Chemistry (JCC-12) 2017 held between 19th - 20th September 2017 at Aston Hotel and Convetion Centre, Semarang, Indonesia

Dean of Faculty of Mathematics and Natural Sciences Universitas Negeri Semarang 30 sep

Cepi Kurniawan, S.S., M.Si., Ph.D. Conference Chair

LETTER OF ASSIGNMENT

No: 253/MACHUNG/ST/IX/2017

The Rector of Universitas Ma Chung hereby assigns:

Name	:	Dr. Leny Yuliati
Employee's Number	:	20160018
Position	;	Principal Investigator of MRCPP

to participate in the **12th Joint Conference on Chemistry 2017 as Oral Presenter** with abstract entitled "Effect of Preparation Methods on the Activity of Titanium DioxideCarbon Nitride Composites for Photocatalytic Degradation of Salicylic Acid" organized by Chemistry Department of Universitas Negeri Semarang which is held on 19-20 September 2017 in Crystal Ballroom, Aston Hotel and Convention Centre, Semarang.

She has to submit an official report when returns to work.

Please be informed.

Malang, 8 September 2017 Rector,

Dr. Chatief Kunjaya

Acknowledged by, m Nar (e)

CC:

- 1. Vice Rectors
- 2. Ma Chung Research Center for Photosynthetic Pigments (MRCPP)
- 3. Human Resource Management

Program Book

Crystall Ballroom, Aston Hotel and Convention Centre, Semarang, Indonesia

19-20 September 2017 Semarang, Indonesia

Organized by:

Р́Л

DAILY GRID

18 September 2017						
18.30 - 21.00	Wecloming Dinner	Aston Hotel ballroom				

19 September 2017

07.00-08.15	Registration						
	Opening Ceremony						
08.15-08.35	Indonesia National Athem						
	Welcoming Dance						
09 25 09 40	Chairman speech						
08.55-08.40	Cepi Kurniawan, PhD						
08.40-08.50	Welcoming from the head of department						
08 50 00 00	Welcoming speech and opening the conference by the Dean						
08.30-09.00	Prof. Dr. Zaenuri M., S.E, M.Si, Akt.						
09.00-09.20	Coffee Break						
	Prof. Guoping Chen						
00 20 10 00	Hybrid Scaffolds of Biodegradable Polymers and Biomimetic Matrices for						
09.20-10.00	Tissue Engineering Applications						
	Chair: Sri Kadarwati, PhD						
	Prof. David Harding						
	Designing Molecular Switches: A Molecular Magnetism Approach						
10.00-11.00	Prof. Hadariah Bahron						
	Imines and Metals: Marriage Made in Heavens						
	Chair: M. Alauhdin, PhD						
	Prof. Kasmadi Imam Kasmadi						
	The Cultivation of Religious Characters in Chemical Science Learning						
11.00-12.00	Prof. Subramaniam Ramanathan						
	Chair: Sri Kadarwati, PhD						
12.00-13.00	Lunch Break						
	Prof. Ni Nyoman Tri Puspaningsih						
	Strengthening The Academic Network on Bioresource Technology Research						
12 00 14 00	towards Green Industry						
13.00-14.00	Prof. Hajime Hirao						
	Computationally Exploring Complex Molecular Systems						
	Chair: M. Alauhdin, PhD						

BREAKOUT SESSION 19 September 2017

Time		DOOM D	POOM C		DOOM E	DOOM E	POOM C		BOOM I		Ballroom	
Time	KUUWI A		KOOM C		KOOM E	KUUWI F	KUUM G			Poster		
14 00 14 15	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017
14.00-14.15	262	SUP	135	RAW	AMF	SRA	KDN	DDH	212	207	016	063
14 15 14 20	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017
14.15-14.30	278	155	131	166	014	134	306	MMM	254	007	305	308
14 20 14 45	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2018	JCC2017	jcc2017	JCC2017	JCC2017	JCC2017	JCC2017
14.30-14.43	278	270	179	167	123	SSS	224	144	079	199	311	172
14 45 15 00	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	jcc20170
14.45-15.00	125	298	185	258	088	074	006	008	103	189	255	37
					COF	FEE BREA	K					
				(I	Parallel sess	ion is still c	ontinued)					
				1								
15 00-15 15	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017
13.00-13.13	271	237	301	083	108	293	061	318	169	300	064	188
15 15 15 30	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	jcc2017
13.13-13.30	065	149	165	198	310	275	267	157	101	111	274	139
15 30 15 45	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017
13.30-13.43	302	086	203	307	129	228	314	276	209	010	036	ATP
	0								0			

Time			DOOMC		DOOM E	DOOME	DOOM C		DOOMI		Ballroom	
Time	KUUM A	KUUM B	ROOMC	ROOM D	KUUM E	KUUM F	KUUM G	ROOM H	RUUMI		Poster	
15 45 16 00	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017
15.45-10.00	069	062	025	126	216	277	098	244	312	022	222	028
16 00 16 15	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017	JCC2017
10.00-10.15	122	247	118	226	313	313	283	178	157	073	206	317
16 15 16 20	JCC2017	JCC2017	JCC2017	JCC017	JCC2017	JCC2017						
10.13-10.30	193	197	248	WST	144	310	263	240	AHW	304	BBB	315
									JCC2017	JCC2017	JCC2017	
								309	BCH	SHR		
								JCC2017				
										PLS		
16.45 -	16.45 – CLOSING											
17.00	CLOSING											

The 12th Joint Conference
on Chemistry- 2017
19-20 September 2017
Semarang, Indonesia

REG. CODE	Title	Author(s)
JCC2017254	Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein	Fitri Amelia1, Iryani1, Prima Yulia Sari1, ArliAditya Parikesit2, Ridla Bakri2, Erwin Prasetya Toepak2, Usman Sumo Friend T
JCC2017255	Potentials of n-Heksan, Aseton and Ethanol Fraction Extract in Palmyra Fruit (BorassusflabelliferL.) as Antioxidant	Sukmawati
JCC2017258	Synthesis of Eugenol–Lauryl Methacrylate Copolymers via Cationic Polymerization	Aisyah Fajrin1, Soerya Dewi Marliana1, Desi Suci Handayani1
JCC2017262	Modification of montmorillonite with tetraethyl ortosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB)	Dian M. Widjonarko, Oktaviana D. Mayasari, Khoirina D. Nugrahaningtyas, Sayekti
JCC2017263	Chemical Characteristics And Fatty Acid Profile Of Butterfly Tree Seed Oil (Bauhinia Purpurea L)	H Soetjipto* , C A Riyanto* T Victoria*
JCC2017267	Effect of Temperature to Adsorption Capacity and Coefficient Distribution on Rare Earth Elements Adsorption (Y, Gd, Dy) Using SIR	Nofriady Aziz1, Aswati Mindaryani2, Supranto2, Agus Taftazani3, Dwi Biyantoro3
JCC2017270	The Wastewater Treatment Processes and Mechanism of Organic Matter Removal by Modified Multi-Soil-Layering System	Roy Andreas1, Irmanto1
JCC2017271	Quantitative Analysis of Curcuminoid Collected from Different Location in Indonesia by TLC-Densitometry and Its Antioxidant Capacity	Dinar Sari C. Wahyuni1, AnifNur Artanti1, Yudi Rinanto2
JCC2017274	Photocatalyst of Perovskite CaTiO3 Nanopowder Synthesized from CaO derived from Snail Shell and Comparison with CaO and CaCO3	Is Fatimah1, Yeka Rahmadianti1, RizkyAyu Pudiasari1
JCC2017275	Surface and Groundwater Interactions: Cikapundung Bandung, Kanal BanjirTimur Semarang and CisadaneTangerang	Dasapta Erwin Irawan1, Endah Sulistyawati2, AleciaArtita Midori3, Budi Faisal3
JCC2017276	Effect of Ratio of Sugar Palm Fruit (Arengapinnata) and Carrageenan and Citric Acid on Moisture Content, Biodegradability, and Functional Groups of Biodegradable Film	Safira Aulia Rinanda1, Muhammad Nastabiq1,Sonya Hakim Raharjo1, Shifa Karima Hayati1, Muhammad Ainul Yaqin1, and Ratnawati1
JCC2017277	The role of pectin in Pb binding by carrot peel biosorbents : Isoterm adsorption Study	Budi Hastuti, and DwiSiswanta
JCC2017278	Curcuminoid content of Curcuma longa L. and Curcuma xanthorrhiza rhizome based on drying method with NMR and HPLC-UVD	Saptono Hadi 1*, Dinar Sari C. Wahyuni 1, Anif Nur Artanti 1, Yudi Rinanto 2
JCC2017283	Effect of Preparation Methods on the Activity of Titanium Dioxide-Carbon Nitride Composites for Photocatalytic Degradation of Salicylic Acid	Leny Yuliati1-3, AzlanMohd Salleh4, MohdHayrieMohd Hatta4, Hendrik O. Lintang1-3
JCC2017293	Separation of Gadolinium (Gd) Using SinergisSolven Mixed Topo -D2ehpa With Extraction Method	Nuradam Effendy1, Kris Tri Basuki1, Dwi Biyantoro2, Nizar Kamil Pewira1

JCC2017283 Effect of Preparation Methods on the Activity of Titanium Dioxide-Carbon Nitride Composites for Photocatalytic Degradation of Salicylic Acid

Leny Yuliati¹⁻³, Azlan Mohd Salleh⁴, Mohd Hayrie Mohd Hatta⁴, Hendrik O. Lintang¹⁻³ ⁷Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Indonesia, ²Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Indonesia, ³Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Malaysia, ⁴Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Malaysia E-mail : leny.yuliati@machung.ac.id

Titanium dioxide has been recognized as an active photocatalyst especially forwater treatment technology.¹⁾ Unfortunately, the anatase titanium dioxide can only be activated by ultraviolet (UV) light while the rutile form can only extend its absorption near visible light irradiation due to its large band gap energy, which are 3.20 and 3.03 eV, respectively.²⁾ Since solar spectrum consists of more visible part than UV light, designing visible light active photocatalyst is crucial. Carbon nitride has been one of the potential visible light active photocatalysts that can be prepared by a cheap precursor such as urea.³⁾In this study, titanium dioxide-carbon nitride composites were prepared by three methods, which were one pot oxidation, impregnation, and physical mixing.Investigating the effect of these preparation methods is an important approach to develop highly active photocatalysts.

Each series of the photocatalysts were prepared with different ratios of titanium to carbon, *i.e.*, 1, 5, 10, 20, and 50 mol%. All samples were characterized by X-ray diffraction (XRD) and diffuse reflectance ultraviolet-visible (DRUV-Vis) spectroscopies. The characterization results confirmed the successful preparation of titanium dioxide, carbon nitride, and the titanium dioxide-carbon nitride composites. Photocatalytic activity tests were carried out for degradation of salicylic acid at room temperature under UV and visible light irradiations. It was confirmed that all the prepared titanium dioxide-carbon nitride composites showed better photocatalytic activities than the bare titanium dioxide and bare carbon nitride. Under UV light irradiation, 90.6% of salicylic acid degradation was achieved on the best composite prepared by one pot oxidation with 5 mol% of titanium to carbon (Ti/C) ratio.On the other hand, the highest degradation under visible light irradiation was 94.30%, observed on the composite that was prepared also by one pot oxidation method with the Ti/C ratio of 10%. Therefore, among the investigated methods, the best method to prepare the titanium dioxide-carbon nitride composites with high photocatalytic activity was one pot oxidation method. Owing to the higher conduction band of titanium dioxide than the carbon nitride, the excited electrons would be transferred from the conduction band of titanium dioxideto the conduction band of carbon nitride. This would reduce the electron recombination rate in the titanium dioxide, which would result in the synergic effect to enhance the activity of the composites. Under UV light irradiation, in addition to the generated holes on titanium dioxide, generated holes oncarbon nitridewould also react with salicylic acid to finally produce water and carbon dioxide. On the other hand, under visible light irradiation, the generated holes on the carbon nitride would be the main active species that would oxidize the salicylic acid.

EFFECT OF PREPARATION METHODS ON THE ACTIVITY OF TITANIUM DIOXIDE-CARBON NITRIDE COMPOSITES FOR PHOTOCATALYTIC DEGRADATION OF SALICYLIC ACID

Leny Yuliati

Azlan Mohd Salleh Mohd Hayrie Mohd Hatta Hendrik O. Lintang

Ma Chung Research Center for Photosyntetic Pigments

1

INTRODUCTION (1)

INTRODUCTION (2)

Drawbacks of TiO₂ Photocatalyst

Wang *et al.*, 2012, *Angewandte Chem. Int. Ed.*, **51**, 68-89. Thomas *et al.*, 2008, *J. Mater. Chem.*,**18**, 4893-4908. Yang *et al.*, 2015, *J. Mater. Chem. A.*,**3**, 14081-14092.

INTRODUCTION (4)

Salicylic Acid

In the present study, the TiO₂-CN composites were prepared by **three methods**, **namely one pot oxidation**, **impregnation**, **and physical mixing**.

Investigating the effect of these preparation methods is an important approach to develop highly active photocatalysts.

The composites were evaluated for **degradation of salicylic acid** as one of the organic pollutants.

Salicylic acid is toxic¹ and can be found in wastewater from many industries.²

[1] Hayat *et al.*, 2010, *Envi. and Exp. Botany*, **68**, 14-25.
[2] Loh *et al.*, 2005, *Sensors and Act. B Chem.*, **107**, 59-63.

EXPERIMENTAL METHODS (1)

Preparation of TiO₂

EXPERIMENTAL METHODS (2)

One Pot Oxidation Method

Various mol ratios of Ti/C (x = 1, 5, 10, 20, and 50 mol%).

Preparation of TiO₂-CN IM

Various mol ratios of Ti/C (x = 1, 5, 10, 20, and 50 mol%).

Characterizations

X-ray diffractometer

DR UV-visible spectrophotometer

EXPERIMENTAL METHODS (4)

Photocatalytic Degradation of Salicylic Acid

- Photocatalyst (50 mg)
- Salicylic acid (100 μM, 50 mL)
- Stirred under dark condition (1 h)
- Photocatalyst (50 mg)
- Salicylic acid (100 μM, 50 mL)
- Stirred under UV lamp 8 W (6 h) or stirred under visible lamp 150 W (6 h)

RESULTS AND DISCUSSION (1)

Ma Chung Research Center

Structural Properties of TiO₂-CN OPO Composites

XRD patterns

When the ratio of Ti/C was low, the composite samples only showed the main peak of CN. With the increase of Ti/C ratio, the CN could be decomposed and the peak of TiO_2 became the dominant diffraction peaks.

RESULTS AND DISCUSSION (2)

Optical Properties of TiO₂-CN OPO Composites

With addition of CN, the composite samples showed absorption in visible region above 400 nm, suggesting that they have good ability to absorb visible light and might show good activity under visible light irradiation.

RESULTS AND DISCUSSION (3)

Photocatalytic Activity of TiO₂-CN OPO Composites

(0) -

Preparation	Ocumula	Percentage of Degradation (%)			
Method	Sample	Under UV light	Under visible light		
One Pot Oxidation	CN	33.7	43.0		
	TiO ₂ (1)-CN OPO	67.3	60.6		
	TiO ₂ (5)-CN OPO	90.6	91.6		
	TiO ₂ (10)-CN OPO	77.4	94.3		
	TiO ₂ (20)-CN OPO	82.6	84.1		
	TiO ₂ (50)-CN OPO	79.6	77.7		
	TiO ₂	60.9	21.4		

All TiO_2 -CN composites showed better activity than the CN or TiO_2 . Samples with low Ti/C ratio (5-10 mol%) showed the best performance.

RESULTS AND DISCUSSION (4)

Ma Chung Research Center

Structural Properties of TiO₂-CN IM Composites

XRD patterns

Composites with low Ti/C ratio (1-5%) were mainly characterized by the CN peak, while high Ti/C ratio (\geq 10%) were dominated with the TiO₂. The CN might be decomposed easier when heated in the presence of TiO_2 .

RESULTS AND DISCUSSION (5)

Optical Properties of TiO₂-CN IM Composites

Only $TiO_2(1)$ -CN IM composite showed absorption in the visible light region above 400 nm. On the other hand, with the increase amount of Ti/C ratio, the absorption in visible light region decreased and shifted to lower wavelength.

RESULTS AND DISCUSSION (6)

Photocatalytic Activity of TiO₂-CN IM Composites

Preparation	Comple	Percentage of Degradation (%)				
Method	Sample	Under UV light	Under visible light			
Impregnation	CN	33.7	43.0			
	TiO ₂ (1)-CN IM	70.7	65.1			
	TiO ₂ (5)-CN IM	89.7	82.6			
	TiO ₂ (10)-CN IM	77.0	86.7			
	TiO ₂ (20)-CN IM	67.3	81.0			
	TiO ₂ (50)-CN IM	66.4	78.0			
	TiO ₂	60.9	21.4			

All TiO_2 -CN composites showed better activity than the CN or TiO_2 . Samples with low Ti/C ratio (5-10 mol%) showed the best performance, but slightly lower activity than the TiO_2 -CN OPO composites.

RESULTS AND DISCUSSION (7)

Structural Properties of TiO₂-CN PM Composites

Composite with low Ti/C ratio *i.e.*, $TiO_2(x)$ -CN PM only exhibited the CN peak. All composites with Ti/C ratio of more than 5% showed the diffraction peaks of both TiO₂ and CN, suggesting the presence of both TiO₂ and CN.

RESULTS AND DISCUSSION (8)

Optical Properties of TiO₂-CN PM Composites

0 **DR UV-Vis spectra** Normalized Kubelka-Munk TiO₂(50)-CN PM arb.u. TiO₂(20)-CN PM TiO₂(10)-CN PM function TiO₂(5)-CN PM TiO₂(1)-CN PM CN TiO₂ 200 300 400 500 600 Wavelength (nm)

All composites exhibited similar absorption spectrum to each other regardless the difference in the Ti/C ratio. All composites showed the characteristics of light absorption for both TiO_2 and CN.

RESULTS AND DISCUSSION (9)

Photocatalytic Activity of TiO₂-CN PM Composites

Preparation	Commis	Percentage of Degradation (%)				
Method	Sample	Under UV light	Under visible light			
	CN	33.7	43.0			
Physical Mixing	TiO ₂ (1)-CN PM	80.0	71.4			
	TiO ₂ (5)-CN PM	79.7	56.7			
	TiO ₂ (10)-CN PM	78.1	56.3			
	TiO ₂ (20)-CN PM	76.1	46.3			
	TiO ₂ (50)-CN PM	81.0	62.4			
	TiO ₂	60.9	21.4			

All TiO_2 -CN composites showed better activity than the CN or TiO_2 . All composites showed similar activity of *ca.* 80% under UV light. Under visible light, the activity was observed to be *ca.* 40–70%.

RESULTS AND DISCUSSION (10)

Activity Comparison

All TiO_2 -CN composites showed better activity than the CN or TiO_2 , suggesting the synergic effect between the CN and TiO_2 .

Both under UV and visible light irradiation, the activity is in the order of: TiO_2 -CN OPO > TiO_2 -CN IM > TiO_2 -CN PM

Even though TiO_2 -CN PM showed the characteristics of both CN and TiO_2 , the activity was not as high as other composites. Physical mixing might not be able to provide strong interface interactions.

In contrast, the one pot oxidation method could provide stronger interactions between the CN and TiO_2 . The composites prepared by one pot oxidation method might induce better charge transfer, which lead to lower electron-hole recombination. As a result, the composites prepared by one pot oxidation method would give better photocatalytic activity.

RESULTS AND DISCUSSION (11)

Proposed Mechanism

Under light irradiation with enough energy, the **electrons** in the valence bands of both TiO_2 and CN in the composite will be **excited** to the conduction bands.

Since the conduction band of TiO_2 is higher than the conduction band of CN, the **excited electrons will be transferred** from the conduction band of TiO_2 to the conduction band of CN. Thus, the **electron** recombination rate of photoexcited TiO_2 will be reduced, giving the increased activity.

CONCLUSIONS

- TiO₂-CN composites could be prepared by one pot oxidation, impregnation, and physical mixing.
- 2. Among the three methods, the composites prepared by one pot oxidation method showed the highest photocatalytic activity for degradation of salicylic acid both under UV and visible light irradiation.
- 3. The synergic effect between TiO_2 and CN in the composite was proposed to reduce the electronhole recombination in the TiO_2 , resulting in the better photocatalytic activity of the composite than the bare TiO_2 and the bare CN.

ACKNOWLEDGEMENTS

This work was financially supported by Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (cost center code: R.J130000.7826.4F002). The academy of sciences for the developing world (TWAS) is also greatly acknowledged via COMSTECHTWAS joint research grants programme for young scientists (cost center code: R.J130000.7320.4B039).

Financial supports to attend the JCC 2017 from MRCPP, Universitas Ma Chung is also greatly acknowledged.

