2nd Humboldt Kolleg in Conjunction with International Conference on Natural Sciences 2014, HK-ICONS 2014

Editors:

Roy Hendroko Setyobudi, Hugo Scheer, Leenawaty Limantara, Yuzo Shioi, Leszek Fiedor, Tatas H.P. Brotosudarmo and Monika N.U. Prihastyanti

2nd Humboldt Kolleg in Conjunction with International Conference on Natural Sciences 2014, HK-ICONS 2014

Editors:
Roy Hendroko Setyobudi, Hugo Scheer, Leenawaty Limantara, Yuzo Shioi, Leszek Fiedor, Tatas H.P. Brotosudarmo and Monika N.U. Prihastyanti

This journal and the individual contributions contained in it are protected under copyright by Elsevier Ltd. and the following terms and conditions apply to their use:

Photocopying

Single photocopies of single articles may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available
for educational institutions that wish to make photocopies for non-profit educational classroom use.

For information on how to seek permission visit www.elsevier.com/permissions or call: (+44) 1865843830 (UK) / (+1) 2152393804 (USA).

Derivative Works

Subscribers may reproduce tables of contents or prepare lists of articles including a within their institutions. Permission of the Publisher is required including compilations and translations (please Permission of the Publisher is required for all other derivative works consult www.elsevier.com/permissions).

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this journal, including any article or part of an article (please consult www.elsevier.com/permissions).
Except as outlined above, no part of this publication may be reproduced, stored in a retrieval system or transmitted
Preface
L. Limantara.

The Condition of Uncaria C A. Rauf, Rahmawaty, A. Hepatoprotective Effects of A. Dwijayanti, A. Freth Coral Diseases in Panjang I A. Sabdono, P.H. Sawo The Routes of Administrati A.D. Wijayanti, G.D. S Apoptosis in Mice Liver C A.A. Maramis, M. Ami An α-Glucosidase Inhibito A.P.G. Macabeo, P.Y.M

Isolation and Characterizal A.P. Subroto, C. Utoms Microwave Assisted Extr A.C. Kumoro, I. Hartat Hydrothermal Carbonatiol A.T. Mursito, A. Yuliy:

Biosolid Management Op A. Ghimire, R. Sen, A.

Identifying Sumatran Peal

Notice
 No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of

 products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.Although all advertising material is expected to conform to ethical (medical) standards, inclusion in this publication A. Wibowo, H. Sloterd A. Haryan Local Isol yanto, M. Purw Process Improvement of 1 Avicenna, M. Mel, S.I
Preliminary Evaluation o Although all advertising material is expected to conform to ethe claims made of it by Inhibition of the Non-Me does not constitute a guarantee or endorsement of the quality or value of its manufacturer.

C. Utomo, A.P. Subre

Micropropagation of Em C.L.M. Marbun, N. T

Numerical Simulation at Wave Energy Conversiol D.T. Ba, N.D. Anh, P

Thermal Stability of $\alpha-\mathrm{P}$ D. Markovic, S. Böh Expression Analysis of ' D.A. Listiawan, R. T The Level of Glutamic Rr. E. Susetyarini .
Genotypic Characteriza E.A. Corcolon, A.C. Oxygen Ion-Conductivi Biodiesel-Fuel Cells F. Rahmawati, W. Fi
t by Elsevier Ltd. and the
opyright laws. Permission iple or systematic copying, Special rates are available oom use.
call: (+44) 1865843830
cts for internal circulation on outside the institution. ins and translations (please
d in this journal, including
eval system or transmitted vise, without prior written
or property as a matter of ;, products, instructions or in particular, independent
aclusion in this publication of the claims made of it by

Contents

Preface

L. Limantara. .
The Condition of Uncaria Gambir Roxb. as One of Important Medicinal Plants in North Sumatra Indonesia A. Rauf, Rahmawaty, A.Z. Siregar 3
Hepatoprotective Effects of Acalypha Indica and Centella Asiaticà in Rat's Liver Against Hypoxia A. Dwijayanti, A. Frethernety, N.S. Hardiany, E.H. Purwaningsih. 11
Coral Diseases in Panjang Island, Java Sea: Diversity of Anti-Pathogenic Bacterial Coral Symbionts A. Sabdono, P.H. Sawonua, A.G.D. Kartika, J.M. Amelia, O.K. Radjasa 15
The Routes of Administration of Amikacin as Consideration in Reptile Therapy A.D. Wijayanti, G.D. Satria, A.E.T.H. Wahyuni 22
Apoptosis in Mice Liver Cells Caused by Formalin-containing Food: Normalization of HSP70 Overexpression by Chlorophyllin A.A. Maramis, M. Amin, Sumarno, A.D. Corebima. 27
An α-Glucosidase Inhibitor from Drepananthus Philippinensis
A.P.G. Macabeo, P.Y.M. Rubio, G.J.D. Alejandro, M. Knorn 36
Isolation and Characterization of Oil Palm Wrinkled 1 (WRI1) GeneA.P. Subroto, C. Utomo, C. Darmawan, Z.A. Tanjung, T. Liwang .40
Microwave Assisted Extraction of Dioscorin from Gadung (Dioscorea Hispida Dennst) Tuber Flour A.C. Kumoro, I. Hartati 47
Hydrothermal Carbonation of K-Rich Ash, Value Added Energy Engineering and CO_{2} Mineral Sequestration A.T. Mursito, A. Yuliyanti, Jakah 56
Biosolid Management Options in Cassava Starch Industries of Thailand: Present Practice and Future Possibilities A. Ghimire, R. Sen, A.P. Annachhatre. 66
Identifying Sumatran Peat Swamp Fish Larvae through DNA Barcoding, Evidence of Complete Life History Pattern A. Wibowo, H. Sloterdijk, S.P. Ulrich 76
Pathotyping of Local Isolates Newcastle Disease Virus from Field Specimens by RT-PCR and Restriction Endonuclease Analysis A. Haryanto, M. Purwaningrum, S. Verawati, S.H. Irianingsih, N. Wijayanti 85
Process Improvement of Biogas Production from Anaerobic Co-digestion of Cow Dung and Corn Husk Avicenna, M. Mel, S.I. Ihsan, R.H. Setyobudi. 91
Preliminary Evaluation of the Pigments Content from Rhodobacter Sphaeroides at Stages during Photosynthetic Growth C.J. Hui, M.N.U. Prihastyanti, T.H.P. Brotosudarmo 101
Inhibition of the Non-Mevalonate Isoprenoid Pathway by Reverse Hydroxamate Analogues of Fosmidomycin C. Lienau, S. Konzuch, T. Gräwert, B. Illarionov, A. Bacher, M. Fischer, N. Tanaka, T. Kurz 108
Design of Expression Cassettes for Inverted Repeat and Intron-Spliced Inverted Repeat of PATE Gene Silencing C. Utomo, A.P. Subroto, C. Darwaman, T. Liwang. 117
Micropropagation of Embryogenic Callus of Oil Palm (Elaeis Guineensis Jacq.) Using Temporary Immersion System C.L.M. Marbun, N. Toruan-Mathius, Reflini, C. Utomo, T. Liwang. 122
Numerical Simulation and Experimental Analysis for a Linear Trigonal Double-Face Permanent Magnet Generator Used in Direct Driven Wave Energy Conversion D.T. Ba, N.D. Anh, P.V. Ngoc 130
Thermal Stability of α-Phycoerythrocyanin
D. Markovic, S. Böhm, K.-H. Zhao, H. Scheer 138
Expression Analysis of Transcription Factors Involved in Chloroplast Differentiation D.A. Listiawan, R. Tanoue, K. Kobayashi, T. Masuda 146
The Level of Glutamic Acid in the Semen of Male White Rat (Ratus Norwegicus) after Being Treated with Tannin of Pluchea Indica Rr. E. Susetyarini 152
Genotypic Characterization of Turmeric (Curcuma Longa L.) Accessions from Mindanao, Philippines Using RAPD Markers E.A. Corcolon, A.C. Laurena, M.L. Dionisio-Sese 157
Oxygen Ion-Conductivity and Chemical Stability of Ceria Based-Electrolyte in Composite with Sodium Carbonate as Electrolyte for DirecBiodiesel-Fuel CellsF. Rahmawati, W. Fajriati, E. Heraldy, D.G. Syarif.164

Function of Tetrapyrroles, Regulation of Tetrapyrrole Metabolism and Methods for Analyses of Tetrapyrroles
H. Schlicke, A. Richter, M. Rothbart, P. Brzezowski, B. Hedtke, B. Grimm

Biliproteins and their Applications in Bioimaging
H. Scheer, X. Yang, K.-H. Zhao

Mathematical Model of the Hydrotropic Microwave Assisted Extraction of Anti Malarial Agent from Andrographis Paniculata
I. Hartati, L. Kurniasari, Y. Anas .

Composition of Photosynthetic Pigments in a Red Alga Kappaphycus Alvarezi Cultivated in Different Depths
Indriatmoko, Heriyanto, L. Limantara, T.H.P. Brotosudarmo
Separation of Photosynthetic Pigments by High-performance Liquid Chromatography: Comparison of Column Performance, Mobile Phase, and Temperature
Indriatmoko, Y. Shioi, T.H.P. Brotosudarmo, L. Limantara
Potentially Antihyperglycemic from Biomass and Phycocyanin of Spirulina Fusiformis Voronikhin by in Vivo Test
I. Setyaningsih, M. Bintang, N. Madina .

Flower Bracts of Temulawak (Curcuma Xanthorrhiza) for Skin Care: Anti-Acne and Whitening Agents
I. Batubara, I. Julita, L.K. Darusman, A.M. Muddathir, T. Mitsunaga

Analysis on the Chlorophyll Content of Commercial Green Leafy Vegetables
L. Limantara, M. Dettling, R. Indrawati, Indriatmoko, T.H.P. Brotosudarmo.

Identification, Isolation and Antioxidant Activity of Pheophytin from Green Tea (Camellia Sinensis (L.) Kuntze)
L. Kusmita, I. Puspitaningrum, L. Limantara

In Vitro Selection of Jatropha Curcas Linn. Hybrids Using Polyethylene Glycol to Obtain Drought Tolerance Character Maftuchah, A. Zainudin.
Application of Simple Multispectral Image Sensor and Artificial Intelligence for Predicting of Drought Tolerant Variety of Soybean M.A.S. Adhiwibawa, Y.E. Setiawan, Y. Setiawan, K.R. Prilianti, T.H.P. Brotosudarmo

Whole Cell Hydrolysis of Sardine (Sardinella Lemuru) Oil Waste Using Mucor Circinelloides NRRL 1405 Immobilized in Poly-Urethane Foam M.G.M. Purwanto, M.V. Maretha, M. Wahyudi, M.T. Goeltom .

Sensory Characteristics of Seasoning Powders from Overripe Tempeh, a Solid State Fermented Soybean
M.D.P.T. Gunawan-Puteri, T.R. Hassanein, E.K. Prabawati, C.H. Wijaya, A.N. Mutukumira.

Indigenous Herbal Recipes for Treatment of Liver Cirrhosis
M.P.B. Wijayagunawardane, C.U.B. Wijerathne, C.B. Herath

Financial Prospects in the Application of Decanter System for the Treatment of Sludge Wastewater in Water Treatment Plant System Mohajit.
Detection of Gamma-Irradiated Mutant of Rodent Tuber (Typhonium Flagelliforme Lodd.) in Vitro Culture by RAPD Molecular Marker N.F. Sianipar, Ariandana, W. Maarisit.

Performance of Tetraphenylsulfonato Disilane in Catalytic Transesterification of Crude Palm Oil and Esterification of Fatty Acids with Secondary Alcohols
N. Bangun, W. Manullang, L. Panggabean, S.B. Sembiring, R. Simangunsong, P. Bali, F.R. Panjaitan .

The Potency of Guava Psidium Guajava (L.) Leaves as a Functional Immunostimulatory Ingredient
N. Laily, R.W. Kusumaningtyas, I. Sukarti, M.R.D.K. Rini .

Formulating Two Steps Loan Scheme to Support Emission Reduction Projects in Indonesia
N. Syaifudin, H. Amir, S. Wianwiwat . .

The Performance of Jatropha Curcas Linn. Capsule Husk as Feedstocks Biogas in One Phase Anaerobic Digestion
P.G. Adinurani, S.R. Hendroko, S.K. Wahono, A. Nindita, M. Mairziwan, A. Sasmito, Y.A. Nugroho, T. Liwang

Bioremediation of Aged Petroleum Oil Contaminated Soil: From Laboratory Scale to Full Scale Application Q. Helmy, R. Laksmono, E. Kardena

Integrated Geographic Information System and Global Positioning System for Mapping of Forest Plants in Supporting Natural Resources Protection

Rahmawaty, E.K. Sari, A. Syofyan, A. Rauf. .
Peptide-derived from Seahorse Exerts a Protective Effect Against Cholinergic Neuronal Death in in vitro Model of Alzheimer's Disease
R. Pangestuti, S.-K. Kim .

Encapsulation of Brown Seaweed Pigment by Freeze Drying: Characterization and its Stability during Storage
R. Indrawati, H. Sukowijoyo, Indriatmoko, R.D.E. Wijayanti, L. Limantara .

Genetic Diversity of Celosia Variants in East Java Based on Polyphenol Oxidase-PPO Genes
R. Mastuti, E.L. Arumingtyas, A.A. Fatinah. .

Potential of Ciplukan (Physalis Angulata L.) as Source of Functional Ingredient
R.W. Kusumaningtyas, N. Laily, P. Limandha.

Preliminary Study the Potency of Macroalgae in Yogyakarta: Extraction and Analysis of Algal Pigments from Common Gunungkidul Seaweeds R. Haryatfrehni, S.C. Dewi, A. Meilianda, S. Rahmawati, I.Z.R. Sari .

Removal of Lead and Copper from Contaminated Water Using EAPR System and Uptake by Water Lettuce (Pistia Stratiotes L.)
R.S. Putra, F. Cahyana, D. Novarita.

Biological Purification System: Integrated Biogas from Small Anaerobic Digestion and Natural Microalgae
Salafudin, R.H. Setyobudi, S.K. Wahono, A. Nindita, P.G. Adinurani, Y.A. Nugroho, A. Sasmito, T. Liwang.
Serial Endothelial Cell Count of Donor Corneal Buttons in Optisol-GS
S.A.B. Sibayan, Ma. C.P. Garcia-Arenal, K.D. Corpus, J.R.G. Manlongat, M.B.B. Ibañez IV, Ma. D.B. Padilla, J.U. Dy Liacco.

33
Vitamin A Fortification Effort
17 S.A. Tanumihardjo.
Second Generation Bioethano Adaptation of the Photosynth T.H.P. Brotosudarmo, L. L The Chlorophyll b Reductase
I. Jia, H. Ito, A. Tanaka. Heavy Metals in Water of Str T.M. Palapa, A.A. Maram 20. Effects of Pigment-Protein F Nervous Necrosis (VNN) Infi
21 U. Yanuhar.
A Survey of Photosynthetic F W. Miyata, T. Suzuki, B.E Effects of Cyclohexane/Acet,
22: W. Rahmalia, J.-F. Fabre, Anti-Cancer Effect of Kaffir
23. W.A. Sri Tunjung, J. Cina Agrobacterium Tumefaciens 23. Early Flowering
Y.A. Purwestri, R.D.K. S\&

24 The Photosensitizer Stabilitit Y.A. Handoko, F.S. Rond 25: Status of Drug Discovery Re Y.H. Tapilatu .
26. Sweet Potato Production for Y. Widodo, S. Wahyunins

27(Peroxidase Enzyme Activit!

(Xanthomonas Axonopodis F

27 Y. Yanti.
Partial Oxidation of Methan 28: Y.K. Krisnandi, B.A.P. Pı

29:
30
30ε
311
$32 t$
$34:$
35 :
361
367
$37!$
381
38°

Separation of Photosynthetic Pigments by High-Performance Liquid Chromatography: Comparison of Colum Performance, Mobile Phase, and Temperature

Indriatmoko ${ }^{\mathrm{a}}$, Yuzo Shioi ${ }^{\mathrm{a}}$, Tatas Hardo Panintingjati Brotosudarmo ${ }^{\mathrm{a}}$, Leenawaty Limantara ${ }^{\text {a * }}$
${ }^{\text {a }}$ Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia

Abstract

High-performance liquid chromatography (HPLC) has been commonly used as method of separating and identififity photosynthetic pigments such as chlorophylls and carotenoids because of such advantages as speed, high resolution ati sensitivity. In this technique, high separation relies largely on the type of column material. This study compared the efficiençt five reverse-phase columns, C8, C18, C18 monolithic, π-NAP, and cholester, for separation of photosynthetic pigments at sernh fixed conditions of mobile phase and temperature. This investigation also analysed the parameters of Δt_{R} and t_{R} ratio for selete pigments and resolution for structural isomers, such as α - and β-carotene. Among above columns tested, cholester columni suitable for separation of pigments not only for a broad range of polarity, but also for hydrophobic pigments in a simple motil phase. This finding can help in the selection of column and HPLC parameters in separating photosynthetic pigments.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of HK-ICONS 2014
Keyword: Cholesteryl bonded; HPLC column; monolithic packing; particulate packing; photosynthetic pigments; reverse phase.

[^0]| Nomenclature | |
| :--- | :--- |
| Δt_{R} | retention ti |
| t_{R} | retention ti |
| t_{R} Ratio | ratio betwe |
| v / v | solvents vo |

1. Introduction

Chromatography n separation ${ }^{1}$. Since t chromatography ${ }^{1,2}$, col liquid chromatography conducting researches in the development of four main parameters, the best conditions for Pigment analyses of le

In main separation separation occurs dut HPLC/UFLC columns separating pigments ha of small-sized skeletor with particulate packin performance in separat good separation and sl separation. Two most silica. There are numb photosynthetic pigment

Recently, new type packing were invented hiydrophobicity. Nevert stereo-selectivity. Like napthylethyl bonded s advantages, in case of carotenes group.

In previous investig addition to C18 monoli particulate and monolit leaves of Pleomele an common six major pign investigation results shd column had their charad two new type columns approaches would give pigments.

Procedia

 Chemistrytosudarmo ${ }^{\text {a }}$,

1, East Java, Indonesia
d of separating and identifying as speed, high resolution and study compared the efficiency of hotosynthetic pigments at several ers of Δt_{R} and t_{R} ratio for selected umns tested, cholester column is obic pigments in a simple mobile osynthetic pigments.
nents; reverse phase.

Momenclature

t_{R}	retention time difference
t_{8}	retention time
${ }_{48}$ Ratio	ratio between retention tim
viv	solvents volume ratio

1. Introduction

Chromatography method has been introduced since 1905 as specialized technique for photosynthetic pigments separation ${ }^{1}$. Since then, several methods have been developed and commonly used, e.g., thin-layer dhromatography ${ }^{1,2}$, column chromatography ${ }^{3,4}$, and high-performance liquid chromatography (HPLC) ${ }^{5,7}$. Ultra-fast liquid chromatography (UFLC) was one of the newest generations of HPLC which provide special advantages in conducting researches with low time consuming and high resolution data ${ }^{8,9}$. These advantages gave an opportunity in the development of a low cost and rapid analysis method. Generally, quality of UFLC separation is affected by four main parameters, i.e., mobile phase, flow rate, column temperature, and column type. Thus, an exploration of the best conditions for pigment separation had become a challenge for chromatography researchers in the world. Pigment analyses of leaves of higher plants were reported using different UFLC/HPLC analytical methods ${ }^{10-12}$.
In main separation parameters, column material has been understood as an important part where pigment sparation occurs during analysis. Other parameters are usually set depend on column type. Generally, HPLCJUFLC columns are distinguished as monolithic and particulate packing types ${ }^{13}$. Ability of these columns in sparating pigments had reported for various samples and their improvements ${ }^{5,14-16}$. Monolithic column is consisted of small-sized skeletons and wide through-pores which can be achieved higher separation efficiency than the case with particulate packing columns at a similar pressure drop ${ }^{17}$. There are several reports on the monolithic column pefformance in separating photosynthetic pigments ${ }^{16,18,19}$. This column type is known for its advantages in providing good separation and short time analysis ${ }^{20}$. Particulate packing columns have also been widely used for pigment separation. Two most well-used particulate packing column are octyl (C8) and octadecyl (C18) types based on silica. There are numbers of reports on these C8 and C18 which used to develop optimized method for analysis of photosynthetic pigments ${ }^{5,6,14,15}$.
Recently, new types of column based on napthylethtyl bonded silica packing and cholesteryl bonded silica packing were invented. Cholester column is basically similar with conventional ODS column as their equivalent hydrophobicity. Nevertheless, cholester column has high sensitivity for hydrophobic compound due to their strong stere-selectivity. Like cholester column, π-NAP column has unique specific selectivity in separation. This mpthylethyl bonded silica packing column was built for $\pi-\pi$ interactions for hydrophobic compound. These adrantages, in case of photosynthetic pigments separation, provide better chance to provide good separation of arotenes group.
In previous investigation, two silica particulate packing columns (C18 and C8) were analysed as the standard in adition to C 18 monolithic type column to understand the effect of carbon chain length and the difference between puriculate and monolithic types on the pigment separation ${ }^{21}$. The sample used here was pigments extracted from kaves of Pleomele angustifolia, an indigenous source of natural colorants as mentioned previously. It contains wommon six major pigments such as chlorophylls a and b, violaxanthin, zeaxanthin, α-carotene, and β-carotene. This instigation results showed that monolithic column provided better resolution and faster analysis, although each wlumn had their characteristic features. In the present study, in addition to above three columns, an examination of two new type columns mentioned above, i.e., π-NAP and cholester columns, were conducted. This investigation uproaches would give basic information to develop simple and rapid HPLC separation method for photosynthetic pigments.

2. Materials and methods

2.1. Plant material

Pleomele angustifolia Roxb. N. E. Brown was used throughout this study as a pigment source. Samples inc collected from MRCPP Arboretum located in Malang, East Java, Indonesia (S $7^{\circ} 57^{\prime} 21.4632^{\prime \prime}$, E 112°): $24.7056^{\prime \prime}$). Collected leaves were cleaned by rinsing with distilled water and were then frozen and stored at 207 for further analyses.

2.2. Columns

Chromolith ${ }^{\text {® }}$ Performance RP-18e, 4.6 i.d. $\times 100 \mathrm{~mm}$ (MERCK, Darmstadt, Germany), Shim-Pack XR-OD 3 i.d. $\times 100 \mathrm{~mm}$ (Shimadzu, Kyoto, Japan), and Shim-Pack XR-C8, 3 i.d. $\times 100 \mathrm{~mm}$ (Shimadzu) were purchasd from a local provider. Cosmosil cholester, 2 i.d. $\times 50 \mathrm{~mm}$ (Nacalai Tesque), cosmosil π-NAP, 2 i.d. $\times 50 \mathrm{~mm}$ (Nacalai Tesque) were kindly gift from Nacalai Tesque, Inc., Kyoto, Japan.

2.2. Pigments extraction

P. angustifolia leaves were ground using a mortar with a few amounts of sodium ascorbate and calcira carbonate to avoid pigments oxidation and acidification. Liquid nitrogen $\left(-196^{\circ} \mathrm{C}\right)$ was added to prevent enzymair reaction which can affect to the pigment stability. The homogenate (0.2 g . wet weight) of P. angustifolia nz extracted with 3 mL of 100% methanol (GR for analysis, MERCK) in a conical bottom tube, by shaking with vortex for 10 s . In order to minimize photo-degradation and oxidation of the pigments, the extractions afi measurements were carried out under green dimmed light at room temperature under ultra-high purity (990) nitrogen atmosphere (PT. Samator, Surabaya, Indonesia). This rapid extraction method was conducted less the 1 min . Prior to injection, sample pigment was filtrated through a membrane filter ($0.2 \mu \mathrm{~m}$, nylon, Whatman Maidstone, UK).

2.3. HPLC analysis-

Pigments separation was carried out by UFLC using LC-20AD XR equipped with photodiode array detetir SPD-20MA and column oven CTO-20AC (Shimadzu) as reported previously ${ }^{21}$. In briefly, HPLC analysis wz performed isocratic method using a mobile phase consisted of acetonitrile (HPLC Grade, MERCK) and methani (GR for analysis, MERCK). The solvent ratios (v / v) were varies for analysis in the following: $20: 80$ (System I $35: 65$ (System 2), $50: 50$ (System 3), $65: 35$ (System 4) and $80: 20$ (System 5). Column temperature used wa either $30^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$. Pigments were detected in the range of 190 nm to 800 nm . Injection was automated by a auto-sampler SIL-20AC XR (Shimadzu) and $20 \mu \mathrm{~L}$ pigment solution was subjected to analysis.

2.4. Pigment identification

All targeted peaks were isolated for identification. Visible absorption spectra were obtained by UV-Visible Spectrophotometer 1800 (Shimadzu) from 350 nm to 800 nm . Isolated pigments were measured in differen solvents. Chlorophylls group was measured in acetone, diethyl ether, and ethanol, while carotenoids group ii acetone, n-hexane, and ethanol. Spectral properties were then compared with those of reference spectra from the standard phytoplankton pigments ${ }^{5,6,22,23}$.

2.5. Data analysis

UFLC data were reve polynomial regression wa data represent an average

3. Results and discussion

Six photosynthetic pigı the properties of four col with comparison of absory zeaxanthin ($2^{\text {nd }}$ peak), chl peak) (Table 1), as gener after separation with mobi per min and column tem Moreover, particulate pac (Fig. 1. A and C), despit column types. This is prol $40^{\circ} \mathrm{C}$, retention time is al were also obtained by C8

Table 1. Identification of the pigr

Peak No.	Pigment
1	Violaxanthin
2	Zeaxanthin
3	Chlorophyll b
4	Chlorophyll a
5	α-Carotene
6	β-Carotene

Represent I-II-III bands for caro "Mobile phase, $50: 50$ (System - - References: Hegazi ${ }^{5}$; Jeffrey ${ }^{6}$

Cholesteryl bonded sil and H) in terms of selecti hydrophobic compounds. which have a broad spectr column could be clearly s carotene compared with C proved to be more suitab cholester column might be polar pigments (data not s This column, however, carotenoids and their isom

FLC data were revealed from original Shimadzu UFLC operation software, Lab Solution. Plot data and momial regression was created by Origin 7.0 (Origin Lab Corp, Northampton, USA). Both numeric and graphic apresent an average from triplicate analyses with SE.

kults and discussion

ixphotosynthetic pigments were separated with the columns used, except for π-NAP column. In here, therefore, properties of four columns were mainly compared, excluding π-NAP column. The pigments were identified comparison of absorption spectra of isolated pigments in different solvents as follows: violaxanthin ($1^{\text {st }}$ peak), anthin ($2^{\text {nd }}$ peak), chlorophyll b ($3^{\text {rd }}$ peak), chlorophyll $a\left(4^{\text {th }}\right.$ peak), α-carotene ($5^{\text {th }}$ peak), and β-carotene ($6^{\text {th }}$ (Table 1), as generally found in most of the higher plants ${ }^{23-26}$. Fig. 1 shows representative chromatograms separation with mobile phase of acetonitrile-methanol, $50: 50(\mathrm{v} / \mathrm{v})($ System 3) at a fixed flow rate of 0.5 mL in and column temperature at $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. Rapid separation was observed in C 18 than C 8 column. rover, particulate packing column needed longer time analysis than monolithic column at both temperatures 1. A and C), despite the large column volume. High column temperature enhanced time analysis in both mn types. This is probably due to decrease in solvent density with increasing temperature. In beth columns at C. retention time is able to reduce about 0.7 times of $30^{\circ} \mathrm{C}$ to accomplish all peak separation. Similar results also obtained by C8 column, XR-C8 (Fig. 1. E and F).

1. Identification of the pigments extracted from P. angustifolia

Pigment	$\lambda_{\text {max }}(\mathrm{nm})^{*}$					Ref.***
	Acetone	n -Hexane	Diethyl ether	ethanol	eluent**	
Violaxanthin	417,440,470	416,437,469	-	416,438,468	413,436,465	6,22,23
Zeaxanthin	(429),450,477	(425),445,476	-	(429),452,479	(420),445,472	5,6,22
Chlorophyll b	455,592,649	-	455,595,641	463,590,645	465,595,648	6,22,23
Chlorophyll a	430,616,662	-	430,616,662	430,618,666	431,617,663	5,6,22,23
α-Carotene	(423),447,475	419,443,473	-	421,445,473	$(421), 443,474$	5,6,22
β-Carotene	(428),454,480	(425),449,479	-	(426),451,478	(423),450,476	5,6,22,23

Hent 1-II-III bands for carotenoids and Soret, Qx, and Qy bands for chlorophylls, parenthesis represents shoulder peak
witle phase, 50 : 50 (System 3) at $40^{\circ} \mathrm{C}$
Nefences: Hegazi ${ }^{5}$; Jeffrey ${ }^{6}$; Britton ${ }^{22}$; Gross ${ }^{23}$.

Cholesteryl bonded silica packing column was superior for separation among all columns examined (Fig. 1.G H) in terms of selectivity and resolution of hydrophobic pigments, as suggested by manufacturer for separating Laphobic compounds. This investigation examined suitability for the separation of photosynthetic pigments thave a broad spectrum of polarity. As shown in Fig. 1.G and H (see peaks 5 and 6) and also Fig. 4, cholester nn could be clearly separated not only polar pigments, but also non-polar pigments, trans α-carotene and β wene compared with Chromolith and XR-ODS columns. On the other hand, as generally known, XR-C8 was rad to be more suitable for the separation of polar than hydrophobic pigments. These findings suggest that Ister column might be good alternative from usual C18 columns. π-NAP column was unable to separate even in pigments (data not shown), suggesting that this column is unsuitable for separating photosynthetic pigments. scolumn, however, may have advantages and potential in separating isomeric compounds, especially for wenoids and their isomer separation. Further investigation is needed for optimizing this column.
ra were obtained by UV-Visible ents were measured in different anol, while carotenoids group in ose of reference spectra from the

Fig. 1. UFPLC chromatograms of photosynthetic pigments from leaves of P. angustifolia. UFPLC was carried out an isocratic in Sylyer ($50: 50, \mathrm{v} / \mathrm{v}$) and flow rate at 0.5 mL per min. Other conditions are described in the text.

Fig. 2. $\Delta t_{\text {Rchl a-viol }}$ (solid circle) and $\Delta t_{\text {Rb-car-chl a }}$ (open circle) were calculated from the results of UFPLC separation of photosynthetic piges extracted from leaves of P. angustifolia. Other conditions are the same as in Fig. 1. Data are average of three experints SE is less than ± 0.5.

To analyze time distance between pigments with different polarities, retention times of Chl a (Chlorophyllt viol (violaxanthin), and b-car (β-carotene) were selected as peak position indicators in calculating Δt_{R} and t_{R} 佺 These pigments peaks show time distance between polar (viol) to semi-polar (Chl_a) pigments and betweenser polar (Chl_a) to non-polar (b-car) pigments. Fig. 2 shows the effects of solvent compositions on Δt_{R}. Generally reverse phase columns, separation time of pigments decreased with increasing acetonitrile concentrations (increasis) ionic strength). This investigation can be conventionally compared the behaviour of polar and non-polar pignmer against solvent compositions. In separation of polar pigments, Δt_{R} of XR-C8 column was more conspicuon increased than any other columns. In contrast, Δt_{R} of non-polar pigments in cholester column decreased mit increasing acetonitrile concentrations, although other columns were almost constant. From these results, it is liie concluded that under used simple mobile phase, XR-C8 has high flexible retentivity for polar pigments, indirati that this column is suitable for the separation of non-polar pigments. On the other hand, cholester column has fif flexibility for non-polar pigment than any other columns. Thus this column is suitable for non-polar pigme
separation. The results of provides useful information t

Table 2. Δt_{R} chla-viol	
No	and Δt_{R} b-car-ct
1	Chromolith
2	XR-ODS
3	XR-C8
4	Cholester

Peak retention time ratio and $t_{\text {Rß-car/Ch__ } _ \text {, }}$, were also calc column temperatures on $t_{\mathrm{R}} \mathrm{r}$ XR-C8 columns, $t_{\text {Rchl a aviol }}$ increasing solvent strength. columns were linearly decre from analyzed samples are s

16
30

Fig. 3. t_{R} chl a/viol ratio (solid) and (diamond) employed at 30

Table 3. t_{R} ratio polynomial r

No	Column
1	Chromolith
2	XR-ODS
3	XR-C8
4	Cholester

Δt_{R} and t_{R} ratio analysis pigments extracted from acceptable results in separa for separation of polar-sem β-carotene was not the case
\circ
separation of photosynthetic pigments are average of three experiments.
mes of Chl_a (Chlorophyll a), in calculating Δt_{R} and t_{R} ratio. t) pigments and between seminpositions on Δt_{R}. Generally in trile concentrations (increasing polar and non-polar pigments umn was more conspicuously lester column decreased with From these results, it is likely for polar pigments, indicating and, cholester column has high uitable for non-polar pigment
sparation. The results of calculation by polynomial regression for columns used are shown in Table 2. This povides useful information to optimize chromatographic conditions in each column.

Table 2. Δt_{R} chl_-riol and Δt_{R} b-car-chl_a. polynomial regression from analyzed sample.

Peak retention time ratio (t_{R} ratio) is also one of parameters to understand the peak separation. Ratios of t_{RCh} a/viol and $t_{\text {RR-archl_ } _ \text {, }}$, were also calculated and used as peak indicators. Fig. 3 shows the effects of solvent compositions and wlumn temperatures on t_{R} ratio. Similar pigment separations were obtained in both temperatures. In XR-ODS and XR-C8 columns, $t_{\text {Rchl a/viol }}$ was almost constant up to solvent composition of $50: 50$, but then increased with increasing solvent strength. This tendency was also observed in Δt_{R}. On the other hand, $t_{\mathrm{R} \beta \text {-car/chl } _a}$ calculated from all wlumns were linearly decreased with increasing solvent strength, but their values were low. Polynomial regression fom analyzed samples are summarized in Table 3.

F. 3. IR al aviol ratio (solid) and t_{R} b-carchla a ratio (open), from Chromolith (Square), XR-ODS (triangle), XR-C8 (circle), and cholester column (diamond) employed at $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ column temperature.

Table 3. t_{R} ratio polynomial regression calculated from analyzed sample.

No	Column	Temperature	t_{R} chl aviol		$t_{\text {R b-carchl a }}$	
			Equation	R^{2}	Equation	R^{2}
1	Chromolith	$30^{\circ} \mathrm{C}$	$\mathrm{Y}=10.14+0.20 \mathrm{X}+0.02 \mathrm{X}^{2}$	0.96	$\mathrm{Y}=4.00-0.48 \mathrm{X}+0.02 \mathrm{X}^{2}$	0.99
1	Chromolith	$40^{\circ} \mathrm{C}$	$\mathrm{Y}=10.54-0.41 \mathrm{X}+0.07 \mathrm{X}^{2}$	0.72	$\mathrm{Y}=3.68-0.42 \mathrm{X}+0.02 \mathrm{X}^{2}$	0.99
		$30^{\circ} \mathrm{C}$	$\mathrm{Y}=13.05-0.40 \mathrm{X}+0.24 \mathrm{X}^{2}$	0.96	$\mathrm{Y}=4.05-0.45 \mathrm{X}+0.02 \mathrm{X}^{2}$	0.99
2	XR-ODS	$40^{\circ} \mathrm{C}$	$Y=12.68-0.68 \mathrm{X}+0.23 \mathrm{X}^{2}$	0.98	$\mathrm{Y}=3.72-0.39 \mathrm{X}+0.01 \mathrm{X}^{2}$	0.99
3	XR-C8	$30^{\circ} \mathrm{C}$	$\mathrm{Y}=8.04-0.95 \mathrm{X}+0.28 \mathrm{X}^{2}$	0.95	$\mathrm{Y}=2.47-0.20 \mathrm{X}+0.01 \mathrm{X}^{2}$	0.99
3	XR-C8	$40^{\circ} \mathrm{C}$	$\mathrm{Y}=7.16-0.36 \mathrm{X}+0.13 \mathrm{X}^{2}$	0.98	$\mathrm{Y}=2.39-0.20 \mathrm{X}+0.01 \mathrm{X}^{2}$	0.99
		$30^{\circ} \mathrm{C}$	$\mathrm{Y}=4.85-0.58 \mathrm{X}+0.14 \mathrm{X}^{2}$	0.99	$\mathrm{Y}=3.40-0.14 \mathrm{X}-0.02 \mathrm{X}^{2}$	0.99
4	Cholester	$40^{\circ} \mathrm{C}$	$\mathrm{Y}=4.36-0.54 \mathrm{X}+0.12 \mathrm{X}^{2}$	0.99	$\mathrm{Y}=3.00-0.13 \mathrm{X}-0.02 \mathrm{X}^{2}$	0.99

Δ_{R} and t_{R} ratio analysis had provided clear description for the column performance in separating photosynthetic figments extracted from P. angustifolia. All investigated columns, except cosmosil π-NAP column, provide meptable results in separating pigments from polar to non-polar species. Most of these columns had their abilities ir separation of polar-semi polar pigments. However, separation of non-polar carotenoids such as α-carotene and karotene was not the case.

Subsequently, this investigation conducted Gaussian peak fitting analysis using Origin software to determinetir resolution of columns. This analysis focused on the peaks of structurally similar pigments, α-carotene and $\}$ carotene (Fig. 4). Under used conditions, poor pigment separation was observed in the XR-C8. Similarly Chromit column gave low resolution probably due to peak broadening. XR-ODS provided good results of the separationtit much high resolution was obtained by cholester column. Combined together with the previous results, choles: column is superior for the separation of non-polar pigments in terms of selectivity and resolution.

Fig. 4. Peak separation of non-polar pigments (α-carotene and β-carotene). UFPLC was carried out an isocratic in Sys. 3 and 0.5 mL per minite rate. Black line represents original chromatogram. Red lines show Gaussian peak fitting results.

Previously, particulate packing columns (C8 and C18) had been commonly used in HPLC for separait photosynthetic pigments. Huge effort has been made by many researchers to optimize pigment separation throut these column types ${ }^{5,10,14,15,27}$. Most of them employed gradient method as a strategy to increase in separation qualit In some HPLC methods, a narcotic and psychotropic source material, acetone, is used as mobile phase ${ }^{5,14,15}$. Sim the adoption of the 1988 UN Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances some countries including Indonesia, those solvents trading right was limited under very close supervision in order minimize irresponsible used ${ }^{28}$. This restriction was giving us new issue in providing better method for HPLC, n is not use of drug related solvents. Low time and solvent consuming analysis was also becoming strong demand pigment separation analysis due to environmental problem and stability. Photosynthetic pigments were unsthit against extreme uncontrolled environment. Long time HPLC analysis should be considered solvent-pigm interaction and column temperature which gives effect in pigment stability ${ }^{29,30}$. This may cause in decreasi accuracy of the data.

In the previous study ${ }^{21}$, the efficiency between particulate packing and monolithic columns were compar Clearly different from particulate packing bed, monolith column composed by a continuous character of skeletre which fulfills the separation chambers. Monolith contained a discrete bimodal pore size distribution ${ }^{13,31}$. Chromol column showed a typical characteristic of monolithic column in the separation of P. angustifolia pigments. provided better resolution and faster analysis. Thus, high tolerates to flow rate system of this column provides us optimize a rapid separation method.

Cosmosil cholester column is claimed as their abilities of enhanced selectivity over traditional C18 materials greater performance in separating isomers or other closely related compounds. It is expected as an ideal column method development and serves as an excellent alternative to traditional C18 columns. There was, however, limi information about this column performance relating to photosynthetic pigment separation. In this report, this colur has shown its performance compared to other columns. This column has proved its advantages and specializ characteristic in separating hydrophobic pigment in such a rapid elution time. This is the first report on separation of photosynthetic pigment by cosmosil cholester column.

4. Conclusion

In this study, the efficien separation of photosynthetic Among above columns teste especially for hydrophobic p. superior to resolution of struc parameters in separating phot

Acknowledgement

This project was supported 2012 and RT-2014-0432, N Iptek) Program (SK No. 284 authors also special thanks to columns.

References

Jeffrey S. Quantitative thin layer Bioenergetics 1968;162:271-285. Quach HT, Steeper RL, Griffin C spinach. Journal of Chemical Educ Omata T, Murata N. Preparation Sepharose CL-6B and Sepharose Gilmore AM, Yamamoto HY. Re liquid chromatographic column. Jo Hegazi MM, Ruzafa AP, Almela Jania rubens and Padina pavo 1998;829:153-159.
Jeffrey S, Wright S, Mantoura R. P Shioi Y, Fukae R, Sasa T. Chlor Bioenergetics 1983;722:72-79.
Yan B, Zhao J, Brown JS, Blackw 1262.

Romanyshyn L, Tiller PR, Alvaro R by liquid chromatography/tandem m Canjura FL, Schwartz SJ. Separatic Journal of Agricultural and Food Ch Hart DJ, Scott KJ. Development an carotenoid content of vegetables and Shioi Y, Watanabe K, Takamiya Chenopodium album. Plant and Cell Unger KK, Skudas R, Schulte M comparison and critical appraisal. Jon Wright S, Jeffrey SW, Mantoura phytoplankton. Marine Ecology Prog, Zapata M, Rodriguez F, Garrido JL. reversed phase C8 column and pyridir Garrido JL, Rodriguez F, Campana derivatives using a monolithic silica O Nunez O, Nakanishi K, Tanaka N. Chromatography A 2008;1191:231-25 Ruhle W, Paulsen H. Preparation of 2004;684:113-125.
Pol J, Hyotylainen T, Ranta-Aho O, monolithic column for trapping and se Tanaka N, Kobayashi H, Ishizuka chromatography A 2002;965:35-49.
in software to determine the igments, α-carotene and β -R-C8. Similarly Chromolith results of the separation, but previous results, cholester solution.

tic in Sys. 3 and 0.5 mL per min flow
sed in HPLC for separating e pigment separation through increase in separation quality. d as mobile phase ${ }^{5,14,15}$. Since d Psychotropic Substances, in y close supervision in order to etter method for HPLC, which o becoming strong demand for thetic pigments were unstable e considered solvent-pigment This may cause in decreasing
hic columns were compared. atinuous character of skeleton, ze distribution ${ }^{13,31}$. Chromolith f P. angustifolia pigments. It 1 of this column provides us to

Ir traditional C18 materials and xpected as an ideal column for s. There was, however, limited tion. In this report, this column its advantages and specialized his is the first report on the

4. Conclusion

In this study, the efficiency of five reverse-phase columns, C8, C18, C18 monolithic, π-NAP, and cholester, for sparation of photosynthetic pigments at several fixed conditions of mobile phase and temperature were compared. Among above columns tested, cholester column is suitable for separation of pigments for a broad range of polarity, specially for hydrophobic pigments in rapid elution time and simple mobile phase. In addition, this column is also sperior to resolution of structurally similar pigments. These findings can help in the selection of column and HPLC prameters in separating photosynthetic pigments by using simple mobile phase system.

Acknowledgement

This project was supported by National Innovation System Research Grant (RT-2013-0172, No: 187/M/Kp/ XI/ 2012 and RT-2014-0432, No: $288 / \mathrm{M} / \mathrm{Kp} / \mathrm{XII} / 2013$) and National Research Center of Excellence (Pusat Unggulan ptek) Program (SK No. 284/M/Kp/XI/2013) provided by Indonesian Ministry of Research and Technology. The withors also special thanks to Nacalai Tesque, Inc. (Kyoto, Japan) for their gift of cosmosil cholester and π-NAP columns.

References

Jeffrey S. Quantitative thin layer chromatography of chlorophylls and carotenoids from marine algae. Biochimica et Biophysica Acta (BBA)Bioenergetics 1968;162:271-285.
Quach HT, Steeper RL, Griffin GW. An improved method for the extraction and thin-layer chromatography of chlorophyll a and b from spinach. Journal of Chemical Education 2004;81:385.
Omata T, Murata N. Preparation of chlorophyll a, chlorophyll b and bacteriochlorophyll a by column chromatography with DEAESepharose CL-6B and Sepharose CL-6B. Plant and Cell Physiology 1983;24:1093-1100.
Gilmore AM, Yamamoto HY. Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. Journal of Chromatography A 1991;543:137-145.
Hegazi MM, Ruzafa AP, Almela L, Candela ME. Separation and identification of chlorophylls and carotenoids from Caulerpa prolifera, Jania rubens and Padina pavonica by reversed-phase high-performance liquid chromatography. Journal of Chromatography A 1998;829:153-159.
Jeffrey S, Wright S, Mantoura R. Phytoplankton pigments in oceanography: guidelines to modern methods. Paris; Unesco Pub; 1997.
Shioi Y, Fukae R, Sasa T. Chlorophyll analysis by high-performance liquid chromatography. Biochimica et Biophysica Acta (BBA)Bioenergetics 1983;722:72-79.
Yan B, Zhao J, Brown JS, Blackwell J, Carr PW. High-temperature ultrafast liquid chromatography. Analytical Chemistry 2000;72:12531262.

Romanyshyn L, Tiller PR, Alvaro R, Pereira A, Hop CE. Ultra-fast gradient vs. fast isocratic chromatography in bioanalytical quantification by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2001;15:313-319.
Canjura FL, Schwartz SJ. Separation of chlorophyll compounds and their polar derivatives by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 1991;39:1102-1105.
Hart DJ, Scott KJ. Development and evaluation of an HPLC method for the analysis of carotenoids in foods and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chemistry 1995;54:101-111.
Shioi Y, Watanabe K, Takamiya K. Enzymatic conversion of pheophorbide a to the precursor of pyropheophorbide a in leaves of Chenopodium album. Plant and Cell Physiology 1996;37:1 143-1149.
Unger KK, Skudas R, Schulte MM. Particle packed columns and monolithic columns in high-performance liquid chromatographycomparison and critical appraisal. Journal of Chromatography A 2008;1184:393-415.
Wright S, Jeffrey SW, Mantoura R, et al. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 1991;77:183-196.
Zapata M, Rodriguez F, Garrido JL. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series 2000;195:29-45.
Carrido JL, Rodriguez F, Campana E, Zapata M. Rapid separation of chlorophylls a and b and their demetallated and dephytylated terivatives using a monolithic silica C18 column and a pyridine-containing mobile phase. Journal of Chromatography A 2003;994:85-92.
Vunez O, Nakanishi K, Tanaka N. Preparation of monolithic silica columns for high-performance liquid chromatography. Journal of Chromatography A 2008;1191:231-252.
Ruhle W, Paulsen H. Preparation of native and recombinant light-harvesting chlorophyll-a/b complex. Photosynthesis Research Protocols 2004;684:113-125.
Pol J, Hyotylainen T, Ranta-Aho O, Riekkola ML. Determination of lycopene in food by on-line SFE coupled to HPLC using a single monolithic column for trapping and separation. Journal of Chromatography A 2004;1052:25-31.
Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high-efficiency chromatographic separations. Journal of tromatography A 2002;965:35-49.
21. Indriatmoko, Shioi Y, Brotosudarmo THP, Limantara L. Comparison of column performance between monolithic and particulate packingfy the separation of photosynthetic pigments. Paper presented at: International Conference of Plant Physiology; August $26^{\text {th }}-28^{\text {th }}, 2014$; Bil Indonesia.
22. Britton G, Liaaen-Jensen S, Pfander H. Carotenoid volume 1A: isolation and analysis. Basel: Brikhauser Verlag; 1995
23. Gross J. Pigments in vegetables: Chlorophylls and Carotenoids. New York: Van Nostrand Reinhold; 1991.
24. Timperio AM, D'Amici GM, Barta C, Loreto F, Zolla L. Proteomics, pigment composition, and organization of thylakoid membrans in iron-deficient spinach leaves. Journal of Experimental Botany 2007;58:3695-3710.
25. Ottander C, Campbell D, Oquist G. Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. Plantu 1995;197:176-183
26. Schoefs B. Determination of pigments in vegetables Journal of chromatography A 2004;1054:217-226.
27. Darko E, Schoefs B, Lemoine Y. Improved liquid chromatographic method for the analysis of photosynthetic pigments of higher plars Journal of Chromatography A 2000;876:111-116.
28. Jayasuriya DC. The role of chemicals control in the fight against illicit drug production and trafficking. Journal of Financial Crime 1998:5:272-275.
29. Ballschmiter K, Truesdell K, Katz J. Aggregation of chlorophyll in nonpolar solvents from molecular weight measurements. Biochimica a Biophysica Acta (BBA)-General Subjects 1969;184:604-613.
30. Pepkowitz LP. The Stability of carotene in acetone and petroleum ether extracts of green vegetables. Journal of Biological Chemity 1943;149:465-471.
31. Maruska A, Kornysova O. Application of monolithic (continuous bed) chromatographic columns in phytochemical analysis. Journal yf Chromatography A 2006;1112:319-330.

CrossMar

Abstract

Spirulina is one of th Bioactive compound in $S E$ problem in the world. The microalgae was conducted antihyperglycemic activity phycocyanin. Blood glucos administration of biomass a blood glucose level.

2015 The Authors. Publishe (http://creativecommons.org/li Peer-review under responsibili
Keywords: Antihyperglycemic;

Nomenclature
wk week
d day

* Corresponding author. Tel.: +

E-mail address: iriani25@gma

I876-6196 © 2015 The Authors. Pub hatp://creativecommons.org/licenses Per-review under responsibility of th die:10.1016/j.proche.2015.03.030

Separation of Photosynthetic Pigments by High-Performance Liquid Chromatography: Comparison of Column Performance, Mobile Phase, and Temperature

Indriatmoko ${ }^{\text {a }}$, Yuzo Shioi ${ }^{\text {a }}$, Tatas Hardo Panintingjati Brotosudarmo ${ }^{\text {a }}$, Leenawaty Limantara ${ }^{\text {a }}$ *

${ }^{2}$ Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia

Abstract

High-performance liquid chromatography (HPLC) has been commonly used as method of separating and identifying photosynthetic pigments such as chlorophylls and carotenoids because of such advantages as speed, high resolution and sensitivity. In this technique, high separation relies largely on the type of column material. This study compared the efficiency of five reverse-phase columns, C8, C18, C18 monolithic, π-NAP, and cholester, for separation of photosynthetic pigments at several fixed conditions of mobile phase and temperature. This investigation also analysed the parameters of Δt_{R} and t_{R} ratio for selected pigments and resolution for structural isomers, such as α - and β-carotene. Among above columns tested, cholester column is suitable for separation of pigments not only for a broad range of polarity, but also for hydrophobic pigments in a simple mobile phase. This finding can help in the selection of column and HPLC parameters in separating photosynthetic pigments.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of HK-ICONS 2014
Keyword: Cholesteryl bonded; HPLC column; monolithic packing; particulate packing; photosynthetic pigments; reverse phase.

[^1]```
Nomenclature
\Deltat}\mp@subsup{\mathbf{R}}{\mathbf{R}}{}\quad\mathrm{ retention time difference
tr
t}\mp@subsup{t}{\textrm{R}}{}\mathrm{ Ratio ratio between retention time of two pigment peaks
v/v solvents volume ratio
```


## 1. Introduction

Chromatography method has been introduced since 1905 as specialized technique for photosynthetic pigments separation ${ }^{1}$. Since then, several methods have been developed and commonly used, e.g., thin-layer chromatography ${ }^{1,2}$, column chromatography ${ }^{3,4}$, and high-performance liquid chromatography (HPLC) ${ }^{5-7}$. Ultra-fast liquid chromatography (UFLC) was one of the newest generations of HPLC which provide special advantages in conducting researches with low time consuming and high resolution data ${ }^{8,9}$. These advantages gave an opportunity in the development of a low cost and rapid analysis method. Generally, quality of UFLC separation is affected by four main parameters, i.e., mobile phase, flow rate, column temperature, and column type. Thus, an exploration of the best conditions for pigment separation had become a challenge for chromatography researchers in the world. Pigment analyses of leaves of higher plants were reported using different UFLC/HPLC analytical methods ${ }^{10-12}$.

In main separation parameters, column material has been understood as an important part where pigment separation occurs during analysis. Other parameters are usually set depend on column type. Generally, HPLC/UFLC columns are distinguished as monolithic and particulate packing types ${ }^{13}$. Ability of these columns in separating pigments had reported for various samples and their improvements ${ }^{5,14-16}$. Monolithic column is consisted of small-sized skeletons and wide through-pores which can be achieved higher separation efficiency than the case with particulate packing columns at a similar pressure drop ${ }^{17}$. There are several reports on the monolithic column performance in separating photosynthetic pigments ${ }^{16,18,19}$. This column type is known for its advantages in providing good separation and short time analysis ${ }^{20}$. Particulate packing columns have also been widely used for pigment separation. Two most well-used particulate packing column are octyl (C8) and octadecyl (C18) types based on silica. There are numbers of reports on these C8 and C18 which used to develop optimized method for analysis of photosynthetic pigments ${ }^{5,6,14,15}$.

Recently, new types of column based on napthylethtyl bonded silica packing and cholesteryl bonded silica packing were invented. Cholester column is basically similar with conventional ODS column as their equivalent hydrophobicity. Nevertheless, cholester column has high sensitivity for hydrophobic compound due to their strong stereo-selectivity. Like cholester column, $\pi$-NAP column has unique specific selectivity in separation. This napthylethyl bonded silica packing column was built for $\pi-\pi$ interactions for hydrophobic compound. These advantages, in case of photosynthetic pigments separation, provide better chance to provide good separation of carotenes group.

In previous investigation, two silica particulate packing columns (C18 and C8) were analysed as the standard in addition to C 18 monolithic type column to understand the effect of carbon chain length and the difference between particulate and monolithic types on the pigment separation ${ }^{21}$. The sample used here was pigments extracted from leaves of Pleomele angustifolia, an indigenous source of natural colorants as mentioned previously. It contains common six major pigments such as chlorophylls $a$ and $b$, violaxanthin, zeaxanthin, $\alpha$-carotene, and $\beta$-carotene. This investigation results showed that monolithic column provided better resolution and faster analysis, although each column had their characteristic features. In the present study, in addition to above three columns, an examination of two new type columns mentioned above, i.e., $\pi$-NAP and cholester columns, were conducted. This investigation approaches would give basic information to develop simple and rapid HPLC separation method for photosynthetic pigments.

## 2. Materials and methods

### 2.1. Plant material

Pleomele angustifolia Roxb. N. E. Brown was used throughout this study as a pigment source. Samples were collected from MRCPP Arboretum located in Malang, East Java, Indonesia (S 7 $7^{\circ} 57^{\prime} 21.4632$ ", E $112^{\circ} 35^{\prime}$ 24.7056 "). Collected leaves were cleaned by rinsing with distilled water and were then frozen and stored at $-20^{\circ} \mathrm{C}$ for further analyses.

### 2.2. Columns

Chromolith ${ }^{\circledR}$ Performance RP-18e, 4.6 i.d. $\times 100 \mathrm{~mm}$ (MERCK, Darmstadt, Germany), Shim-Pack XR-ODS, 3 i.d. $\times 100 \mathrm{~mm}$ (Shimadzu, Kyoto, Japan), and Shim-Pack XR-C8, 3 i.d. $\times 100 \mathrm{~mm}$ (Shimadzu) were purchased from a local provider. Cosmosil cholester, 2 i.d. $\times 50 \mathrm{~mm}$ (Nacalai Tesque), cosmosil $\pi$-NAP, 2 i.d. $\times 50 \mathrm{~mm}$ (Nacalai Tesque) were kindly gift from Nacalai Tesque, Inc., Kyoto, Japan.

### 2.2. Pigments extraction

P. angustifolia leaves were ground using a mortar with a few amounts of sodium ascorbate and calcium carbonate to avoid pigments oxidation and acidification. Liquid nitrogen $\left(-196^{\circ} \mathrm{C}\right)$ was added to prevent enzymatic reaction which can affect to the pigment stability. The homogenate ( 0.2 g wet weight) of $P$. angustifolia was extracted with 3 mL of $100 \%$ methanol (GR for analysis, MERCK) in a conical bottom tube, by shaking with vortex for 10 s . In order to minimize photo-degradation and oxidation of the pigments, the extractions and measurements were carried out under green dimmed light at room temperature under ultra-high purity ( $99 \%$ ) nitrogen atmosphere (PT. Samator, Surabaya, Indonesia). This rapid extraction method was conducted less than 1 min . Prior to injection, sample pigment was filtrated through a membrane filter ( $0.2 \mu \mathrm{~m}$, nylon, Whatman, Maidstone, UK).

### 2.3. HPLC analysis

Pigments separation was carried out by UFLC using LC-20AD XR equipped with photodiode array detector SPD-20MA and column oven CTO-20AC (Shimadzu) as reported previously ${ }^{21}$. In briefly, HPLC analysis was performed isocratic method using a mobile phase consisted of acetonitrile (HPLC Grade, MERCK) and methanol (GR for analysis, MERCK). The solvent ratios (v/v) were varies for analysis in the following: $20: 80$ (System 1); $35: 65$ (System 2), $50: 50$ (System 3), $65: 35$ (System 4) and $80: 20$ (System 5). Column temperature used was either $30^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$. Pigments were detected in the range of 190 nm to 800 nm . Injection was automated by an auto-sampler SIL-20AC XR (Shimadzu) and $20 \mu \mathrm{~L}$ pigment solution was subjected to analysis.

### 2.4. Pigment identification

All targeted peaks were isolated for identification. Visible absorption spectra were obtained by UV-Visible Spectrophotometer 1800 (Shimadzu) from 350 nm to 800 nm . Isolated pigments were measured in different solvents. Chlorophylls group was measured in acetone, diethyl ether, and ethanol, while carotenoids group in acetone, $n$-hexane, and ethanol. Spectral properties were then compared with those of reference spectra from the standard phytoplankton pigments ${ }^{5,6,22,23}$.

### 2.5. Data analysis

UFLC data were revealed from original Shimadzu UFLC operation software, Lab Solution. Plot data and polynomial regression was created by Origin 7.0 (Origin Lab Corp, Northampton, USA). Both numeric and graphic data represent an average from triplicate analyses with SE.

## 3. Results and discussion

Six photosynthetic pigments were separated with the columns used, except for $\pi$-NAP column. In here, therefore, the properties of four columns were mainly compared, excluding $\pi$-NAP column. The pigments were identified with comparison of absorption spectra of isolated pigments in different solvents as follows: violaxanthin ( $1^{\text {st }}$ peak), zeaxanthin ( $2^{\text {nd }}$ peak), chlorophyll $b$ ( $3^{\text {rd }}$ peak), chlorophyll $a\left(4^{\text {th }}\right.$ peak), $\alpha$-carotene $\left(5^{\text {th }}\right.$ peak), and $\beta$-carotene ( $6^{\text {th }}$ peak) (Table 1), as generally found in most of the higher plants ${ }^{23-26}$. Fig. 1 shows representative chromatograms after separation with mobile phase of acetonitrile-methanol, $50: 50(\mathrm{v} / \mathrm{v})$ (System 3) at a fixed flow rate of 0.5 mL per min and column temperature at $30{ }^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. Rapid separation was observed in C 18 than C 8 column. Moreover, particulate packing column needed longer time analysis than monolithic column at both temperatures (Fig. 1. A and C), despite the large column volume. High column temperature enhanced time analysis in both column types. This is probably due to decrease in solvent density with increasing temperature. In both columns at $40^{\circ} \mathrm{C}$, retention time is able to reduce about 0.7 times of $30^{\circ} \mathrm{C}$ to accomplish all peak separation. Similar results were also obtained by C8 column, XR-C8 (Fig. 1. E and F).

Table 1. Identification of the pigments extracted from $P$. angustifolia

| Peak <br> No. | Pigment | $\lambda_{\text {max }}(\mathrm{nm})^{*}$ |  |  |  |  | Ref.*** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Acetone | n -Hexane | Diethyl ether | ethanol | eluent** |  |
| 1 | Violaxanthin | 417,440,470 | 416,437,469 | - | 416,438,468 | 413,436,465 | 6,22,23 |
| 2 | Zeaxanthin | (429),450,477 | (425),445,476 | - | (429),452,479 | (420),445,472 | 5,6,22 |
| 3 | Chlorophyll $b$ | 455,592,649 | - | 455,595,641 | 463,590,645 | 465,595,648 | 6,22,23 |
| 4 | Chlorophyll $a$ | 430,616,662 | - | 430,616,662 | 430,618,666 | 431,617,663 | 5,6,22,23 |
| 5 | $\alpha$-Carotene | (423),447,475 | 419,443,473 | - | 421,445,473 | (421),443,474 | 5,6,22 |
| 6 | $\beta$-Carotene | (428),454,480 | (425),449,479 | - | (426),451,478 | (423),450,476 | 5,6,22,23 |

*Represent I-II-III bands for carotenoids and Soret, Qx, and Qy bands for chlorophylls, parenthesis represents shoulder peak
${ }^{* *}$ Mobile phase, $50: 50$ (System 3) at $40{ }^{\circ} \mathrm{C}$
$* * *$ References: Hegazi ${ }^{5}$; Jeffrey ${ }^{6}$; Britton ${ }^{22}$; Gross ${ }^{23}$.

Cholesteryl bonded silica packing column was superior for separation among all columns examined (Fig. 1.G and H ) in terms of selectivity and resolution of hydrophobic pigments, as suggested by manufacturer for separating hydrophobic compounds. This investigation examined suitability for the separation of photosynthetic pigments which have a broad spectrum of polarity. As shown in Fig. 1.G and H (see peaks 5 and 6) and also Fig. 4, cholester column could be clearly separated not only polar pigments, but also non-polar pigments, trans $\alpha$-carotene and $\beta$ carotene compared with Chromolith and XR-ODS columns. On the other hand, as generally known, XR-C8 was proved to be more suitable for the separation of polar than hydrophobic pigments. These findings suggest that cholester column might be good alternative from usual C18 columns. $\pi$-NAP column was unable to separate even in polar pigments (data not shown), suggesting that this column is unsuitable for separating photosynthetic pigments. This column, however, may have advantages and potential in separating isomeric compounds, especially for carotenoids and their isomer separation. Further investigation is needed for optimizing this column.


Fig. 1. UFPLC chromatograms of photosynthetic pigments from leaves of $P$. angustifolia. UFPLC was carried out an isocratic in System 3 ( $50: 50, \mathrm{v} / \mathrm{v}$ ) and flow rate at 0.5 mL per min. Other conditions are described in the text.


Fig. 2. $\Delta t_{\text {Rchl_-viol }}$ (solid circle) and $\Delta t_{\text {Rb-car-chl_a }}$ (open circle) were calculated from the results of UFPLC separation of photosynthetic pigments extracted from leaves of $P$. angustifolia. Other conditions are the same as in Fig. 1. Data are average of three experiments. SE is less than $\pm 0.5$.

To analyze time distance between pigments with different polarities, retention times of Chl_a (Chlorophyll a), viol (violaxanthin), and b-car ( $\beta$-carotene) were selected as peak position indicators in calculating $\Delta t_{\mathrm{R}}$ and $t_{\mathrm{R}}$ ratio. These pigments peaks show time distance between polar (viol) to semi-polar (Chl $a$ ) pigments and between semipolar (Chl_a) to non-polar (b-car) pigments. Fig. 2 shows the effects of solvent compositions on $\Delta t_{\text {R. }}$. Generally in reverse phase columns, separation time of pigments decreased with increasing acetonitrile concentrations (increasing ionic strength). This investigation can be conventionally compared the behaviour of polar and non-polar pigments against solvent compositions. In separation of polar pigments, $\Delta t_{\mathrm{R}}$ of XR-C8 column was more conspicuously increased than any other columns. In contrast, $\Delta t_{\mathrm{R}}$ of non-polar pigments in cholester column decreased with increasing acetonitrile concentrations, although other columns were almost constant. From these results, it is likely concluded that under used simple mobile phase, XR-C8 has high flexible retentivity for polar pigments, indicating that this column is suitable for the separation of non-polar pigments. On the other hand, cholester column has high flexibility for non-polar pigment than any other columns. Thus this column is suitable for non-polar pigment
separation. The results of calculation by polynomial regression for columns used are shown in Table 2. This provides useful information to optimize chromatographic conditions in each column.

Table 2. $\Delta t_{\mathrm{R}}$ chl_a-viol and $\Delta t_{\mathrm{R} \text { b-car-chl_a, }}$, polynomial regression from analyzed sample.

| No | Column | Temperature | $\Delta t_{\mathrm{R}}$ chl a -viol |  | $\Delta t_{\mathrm{R}} \mathrm{b}$-car-chl ${ }_{\text {a }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Equation | R ${ }^{2}$ | Equation | R ${ }^{2}$ |
| 1 | Chromolith | $30^{\circ} \mathrm{C}$ | $\mathrm{Y}=4.55-0.06 \mathrm{X}+0.21 \mathrm{X}^{2}$ | 0.99 | $\mathrm{Y}=14.06-1.06 \mathrm{X}+0.13 \mathrm{X}^{2}$ | 0.99 |
|  |  | $40^{\circ} \mathrm{C}$ | $\mathrm{Y}=3.54+0.01 \mathrm{X}+0.10 \mathrm{X}^{2}$ | 1.00 | $\mathrm{Y}=10.07-0.93 \mathrm{X}+0.09 \mathrm{X}^{2}$ | 0.99 |
| 2 | XR-ODS | $30^{\circ} \mathrm{C}$ | $\mathrm{Y}=6.66+0.28 \mathrm{X}+0.23 \mathrm{X}^{2}$ | 0.94 | $\mathrm{Y}=20.16-1.23 \mathrm{X}+0.20 \mathrm{X}^{2}$ | 0.88 |
|  |  | $40^{\circ} \mathrm{C}$ | $\mathrm{Y}=4.98-0.07 \mathrm{X}+0.17 \mathrm{X}^{2}$ | 0.99 | $\mathrm{Y}=14.01-1.18 \mathrm{X}+0.14 \mathrm{X}^{2}$ | 0.99 |
| 3 | XR-C8 | $30^{\circ} \mathrm{C}$ | $\mathrm{Y}=1.66+0.07 \mathrm{X}+0.06 \mathrm{X}^{2}$ | 0.99 | $\mathrm{Y}=2.726-0.04 \mathrm{X}+0.01 \mathrm{X}^{2}$ | 0.98 |
|  |  | $40^{\circ} \mathrm{C}$ | $\mathrm{Y}=1.36+0.07 \mathrm{X}+0.03 \mathrm{X}^{2}$ | 0.99 | $\mathrm{Y}=2.14-0.09 \mathrm{X}+0.01 \mathrm{X}^{2}$ | 0.99 |
| 4 | Cholester | $30^{\circ} \mathrm{C}$ | $\mathrm{Y}=2.91-0.66 \mathrm{X}+0.15 \mathrm{X}^{2}$ | 0.99 | $\mathrm{Y}=7.94-1.16 \mathrm{X}+0.09 \mathrm{X}^{2}$ | 0.99 |
|  |  | $40^{\circ} \mathrm{C}$ | $\mathrm{Y}=2.24-0.47 \mathrm{X}+0.1 \mathrm{X}^{2}$ | 0.99 | $\mathrm{Y}=5.37-0.82 \mathrm{X}+0.06 \mathrm{X}^{2}$ | 0.99 |

Peak retention time ratio ( $t_{\mathrm{R}}$ ratio) is also one of parameters to understand the peak separation. Ratios of $t_{\text {RChl } \_ \text {/viol }}$ and $t_{\text {RP-car/Ch_ } \_a}$, were also calculated and used as peak indicators. Fig. 3 shows the effects of solvent compositions and column temperatures on $t_{\mathrm{R} \text {. ratio. Similar pigment separations were obtained in both temperatures. In XR-ODS and }}$ XR-C8 columns, $t_{\text {Rchl_aviol }}$ was almost constant up to solvent composition of $50: 50$, but then increased with increasing solvent strength. This tendency was also observed in $\Delta t_{\mathrm{R}}$. On the other hand, $t_{\mathrm{R} \beta \text {-carchl } \_a}$ calculated from all columns were linearly decreased with increasing solvent strength, but their values were low. Polynomial regression from analyzed samples are summarized in Table 3.


Fig. 3. $t_{\mathrm{R}}$ chl a/viol ratio (solid) and $t_{\mathrm{Rb} \text {-car/chl a }}$ ratio (open), from Chromolith (Square), XR-ODS (triangle), XR-C8 (circle), and cholester column (diamond) employed at $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ column temperature.

Table 3. $t_{\mathrm{R}}$ ratio polynomial regression calculated from analyzed sample.

| No | Column | Temperature | $t_{\text {R chl a/viol }}$ |  | $t_{\text {R b-car/chl a }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Equation | $\mathrm{R}^{2}$ | Equation | R ${ }^{2}$ |
| 1 | Chromolith | $30^{\circ} \mathrm{C}$ | $\mathrm{Y}=10.14+0.20 \mathrm{X}+0.02 \mathrm{X}^{2}$ | 0.96 | $\mathrm{Y}=4.00-0.48 \mathrm{X}+0.02 \mathrm{X}^{2}$ | 0.99 |
|  |  | $40^{\circ} \mathrm{C}$ | $\mathrm{Y}=10.54-0.41 \mathrm{X}+0.07 \mathrm{X}^{2}$ | 0.72 | $\mathrm{Y}=3.68-0.42 \mathrm{X}+0.02 \mathrm{X}^{2}$ | 0.99 |
| 2 | XR-ODS | $30^{\circ} \mathrm{C}$ | $\mathrm{Y}=13.05-0.40 \mathrm{X}+0.24 \mathrm{X}^{2}$ | 0.96 | $\mathrm{Y}=4.05-0.45 \mathrm{X}+0.02 \mathrm{X}^{2}$ | 0.99 |
|  |  | $40^{\circ} \mathrm{C}$ | $\mathrm{Y}=12.68-0.68 \mathrm{X}+0.23 \mathrm{X}^{2}$ | 0.98 | $\mathrm{Y}=3.72-0.39 \mathrm{X}+0.01 \mathrm{X}^{2}$ | 0.99 |
| 3 | XR-C8 | $30^{\circ} \mathrm{C}$ | $\mathrm{Y}=8.04-0.95 \mathrm{X}+0.28 \mathrm{X}^{2}$ | 0.95 | $\mathrm{Y}=2.47-0.20 \mathrm{X}+0.01 \mathrm{X}^{2}$ | 0.99 |
|  |  | $40^{\circ} \mathrm{C}$ | $\mathrm{Y}=7.16-0.36 \mathrm{X}+0.13 \mathrm{X}^{2}$ | 0.98 | $\mathrm{Y}=2.39-0.20 \mathrm{X}+0.01 \mathrm{X}^{2}$ | 0.99 |
| 4 | Cholester | $30^{\circ} \mathrm{C}$ | $\mathrm{Y}=4.85-0.58 \mathrm{X}+0.14 \mathrm{X}^{2}$ | 0.99 | $\mathrm{Y}=3.40-0.14 \mathrm{X}-0.02 \mathrm{X}^{2}$ | 0.99 |
|  |  | $40^{\circ} \mathrm{C}$ | $\mathrm{Y}=4.36-0.54 \mathrm{X}+0.12 \mathrm{X}^{2}$ | 0.99 | $\mathrm{Y}=3.00-0.13 \mathrm{X}-0.02 \mathrm{X}^{2}$ | 0.99 |

$\Delta t_{\mathrm{R}}$ and $t_{\mathrm{R}}$ ratio analysis had provided clear description for the column performance in separating photosynthetic pigments extracted from P. angustifolia. All investigated columns, except cosmosil $\pi$-NAP column, provide acceptable results in separating pigments from polar to non-polar species. Most of these columns had their abilities for separation of polar-semi polar pigments. However, separation of non-polar carotenoids such as $\alpha$-carotene and $\beta$-carotene was not the case.

Subsequently, this investigation conducted Gaussian peak fitting analysis using Origin software to determine the resolution of columns. This analysis focused on the peaks of structurally similar pigments, $\alpha$-carotene and $\beta$ carotene (Fig. 4). Under used conditions, poor pigment separation was observed in the XR-C8. Similarly Chromolith column gave low resolution probably due to peak broadening. XR-ODS provided good results of the separation, but much high resolution was obtained by cholester column. Combined together with the previous results, cholester column is superior for the separation of non-polar pigments in terms of selectivity and resolution.


Fig. 4. Peak separation of non-polar pigments ( $\alpha$-carotene and $\beta$-carotene). UFPLC was carried out an isocratic in Sys. 3 and 0.5 mL per min flow rate. Black line represents original chromatogram. Red lines show Gaussian peak fitting results.

Previously, particulate packing columns (C8 and C18) had been commonly used in HPLC for separating photosynthetic pigments. Huge effort has been made by many researchers to optimize pigment separation through these column types ${ }^{5,10,14,15,27}$. Most of them employed gradient method as a strategy to increase in separation quality. In some HPLC methods, a narcotic and psychotropic source material, acetone, is used as mobile phase ${ }^{5,14,15}$. Since the adoption of the 1988 UN Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances, in some countries including Indonesia, those solvents trading right was limited under very close supervision in order to minimize irresponsible used ${ }^{28}$. This restriction was giving us new issue in providing better method for HPLC, which is not use of drug related solvents. Low time and solvent consuming analysis was also becoming strong demand for pigment separation analysis due to environmental problem and stability. Photosynthetic pigments were unstable against extreme uncontrolled environment. Long time HPLC analysis should be considered solvent-pigment interaction and column temperature which gives effect in pigment stability ${ }^{29,30}$. This may cause in decreasing accuracy of the data.

In the previous study ${ }^{21}$, the efficiency between particulate packing and monolithic columns were compared. Clearly different from particulate packing bed, monolith column composed by a continuous character of skeleton, which fulfills the separation chambers. Monolith contained a discrete bimodal pore size distribution ${ }^{13,31}$. Chromolith column showed a typical characteristic of monolithic column in the separation of $P$. angustifolia pigments. It provided better resolution and faster analysis. Thus, high tolerates to flow rate system of this column provides us to optimize a rapid separation method.

Cosmosil cholester column is claimed as their abilities of enhanced selectivity over traditional C18 materials and greater performance in separating isomers or other closely related compounds. It is expected as an ideal column for method development and serves as an excellent alternative to traditional C18 columns. There was, however, limited information about this column performance relating to photosynthetic pigment separation. In this report, this column has shown its performance compared to other columns. This column has proved its advantages and specialized characteristic in separating hydrophobic pigment in such a rapid elution time. This is the first report on the separation of photosynthetic pigment by cosmosil cholester column.

## 4. Conclusion

In this study, the efficiency of five reverse-phase columns, C8, C18, C18 monolithic, $\pi$-NAP, and cholester, for separation of photosynthetic pigments at several fixed conditions of mobile phase and temperature were compared. Among above columns tested, cholester column is suitable for separation of pigments for a broad range of polarity, especially for hydrophobic pigments in rapid elution time and simple mobile phase. In addition, this column is also superior to resolution of structurally similar pigments. These findings can help in the selection of column and HPLC parameters in separating photosynthetic pigments by using simple mobile phase system.

## Acknowledgement

This project was supported by National Innovation System Research Grant (RT-2013-0172, No: 187/M/Kp/ XI/ 2012 and RT-2014-0432, No: 288/M/Kp/XII/2013) and National Research Center of Excellence (Pusat Unggulan Iptek) Program (SK No. 284/M/Kp/XI/2013) provided by Indonesian Ministry of Research and Technology. The authors also special thanks to Nacalai Tesque, Inc. (Kyoto, Japan) for their gift of cosmosil cholester and $\pi$-NAP columns.

## References

1. Jeffrey S. Quantitative thin layer chromatography of chlorophylls and carotenoids from marine algae. Biochimica et Biophysica Acta (BBA)Bioenergetics 1968;162:271-285.
2. Quach HT, Steeper RL, Griffin GW. An improved method for the extraction and thin-layer chromatography of chlorophyll $a$ and $b$ from spinach. Journal of Chemical Education 2004;81:385.
3. Omata T, Murata N. Preparation of chlorophyll $a$, chlorophyll $b$ and bacteriochlorophyll $a$ by column chromatography with DEAESepharose CL-6B and Sepharose CL-6B. Plant and Cell Physiology 1983;24:1093-1100.
4. Gilmore AM, Yamamoto HY. Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. Journal of Chromatography A 1991;543:137-145.
5. Hegazi MM, Ruzafa AP, Almela L, Candela ME. Separation and identification of chlorophylls and carotenoids from Caulerpa prolifera, Jania rubens and Padina pavonica by reversed-phase high-performance liquid chromatography. Journal of Chromatography $A$ 1998;829:153-159.
6. Jeffrey S, Wright S, Mantoura R. Phytoplankton pigments in oceanography: guidelines to modern methods. Paris: Unesco Pub; 1997.
7. Shioi Y, Fukae R, Sasa T. Chlorophyll analysis by high-performance liquid chromatography. Biochimica et Biophysica Acta (BBA)Bioenergetics 1983;722:72-79.
8. Yan B, Zhao J, Brown JS, Blackwell J, Carr PW. High-temperature ultrafast liquid chromatography. Analytical Chemistry 2000;72:12531262.
9. Romanyshyn L, Tiller PR, Alvaro R, Pereira A, Hop CE. Ultra-fast gradient vs. fast isocratic chromatography in bioanalytical quantification by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2001;15:313-319.
10. Canjura FL, Schwartz SJ. Separation of chlorophyll compounds and their polar derivatives by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 1991;39:1102-1105.
11. Hart DJ, Scott KJ. Development and evaluation of an HPLC method for the analysis of carotenoids in foods and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chemistry 1995;54:101-111.
12. Shioi Y, Watanabe K, Takamiya K. Enzymatic conversion of pheophorbide a to the precursor of pyropheophorbide a in leaves of Chenopodium album. Plant and Cell Physiology 1996;37:1143-1149.
13. Unger KK, Skudas R, Schulte MM. Particle packed columns and monolithic columns in high-performance liquid chromatographycomparison and critical appraisal. Journal of Chromatography A 2008;1184:393-415.
14. Wright S, Jeffrey SW, Mantoura R, et al. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 1991;77:183-196.
15. Zapata M, Rodriguez F, Garrido JL. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series 2000;195:29-45.
16. Garrido JL, Rodriguez F, Campana E, Zapata M. Rapid separation of chlorophylls $a$ and $b$ and their demetallated and dephytylated derivatives using a monolithic silica C18 column and a pyridine-containing mobile phase. Journal of Chromatography A 2003;994:85-92.
17. Nunez O, Nakanishi K, Tanaka N. Preparation of monolithic silica columns for high-performance liquid chromatography. Journal of Chromatography A 2008;1191:231-252.
18. Ruhle W, Paulsen H. Preparation of native and recombinant light-harvesting chlorophyll-a/b complex. Photosynthesis Research Protocols 2004;684:113-125.
19. Pol J, Hyotylainen T, Ranta-Aho O, Riekkola ML. Determination of lycopene in food by on-line SFE coupled to HPLC using a single monolithic column for trapping and separation. Journal of Chromatography A 2004;1052:25-31.
20. Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high-efficiency chromatographic separations. Journal of chromatography A 2002;965:35-49.
21. Indriatmoko, Shioi Y, Brotosudarmo THP, Limantara L. Comparison of column performance between monolithic and particulate packing for the separation of photosynthetic pigments. Paper presented at: International Conference of Plant Physiology; August $26^{\text {th }}-28^{\text {th }}, 2014$; Bali, Indonesia.
22. Britton G, Liaaen-Jensen S, Pfander H. Carotenoid volume 1A: isolation and analysis. Basel: Brikhauser Verlag; 1995.
23. Gross J. Pigments in vegetables: Chlorophylls and Carotenoids. New York: Van Nostrand Reinhold; 1991.
24. Timperio AM, D'Amici GM, Barta C, Loreto F, Zolla L. Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. Journal of Experimental Botany 2007;58:3695-3710.
25. Ottander C, Campbell D, Oquist G. Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. Planta 1995;197:176-183.
26. Schoefs B. Determination of pigments in vegetables. Journal of chromatography A 2004;1054:217-226.
27. Darko E, Schoefs B, Lemoine Y. Improved liquid chromatographic method for the analysis of photosynthetic pigments of higher plants. Journal of Chromatography A 2000;876:111-116.
28. Jayasuriya DC. The role of chemicals control in the fight against illicit drug production and trafficking. Journal of Financial Crime 1998;5:272-275.
29. Ballschmiter K, Truesdell K, Katz J. Aggregation of chlorophyll in nonpolar solvents from molecular weight measurements. Biochimica et Biophysica Acta (BBA)-General Subjects 1969;184:604-613.
30. Pepkowitz LP. The Stability of carotene in acetone and petroleum ether extracts of green vegetables. Journal of Biological Chemistry 1943;149:465-471.
31. Maruska A, Kornysova O. Application of monolithic (continuous bed) chromatographic columns in phytochemical analysis. Journal of Chromatography A 2006;1112:319-330.

[^0]:    *Corresponding author. Tel: +62 8132636 0303, Fax+62 341550175
    E-mail address: leenawaty.limantara@machung.ac.id

[^1]:    *Corresponding author. Tel: +62 8132636 0303, Fax+62 341550175
    E-mail address: leenawaty.limantara@machung.ac.id

