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Step-length measurement as a spatial gait parameter
is useful for the physician and physical therapist for
determining the patient’s gait condition. We hypoth-
esized that this could be determined using ultrasonic
sensors mounted on a shoe-type measurement device.
For that purpose, we have developed a shoe-type mea-
surement device to measure gait parameters. Our
system was found to effectively measure step-length
and pressure distribution. However, we found that
the presence of shoes leads to perishable and fragile
conditions for the sensors. Therefore, we redesigned
the number, angle, and range of the ultrasonic sen-
sors mounted on the shoes in order to clarify and im-
prove the step-length prediction. This paper discusses
the improvement of a shoe-type measurement device
from the implementation with real shoes and the step-
length prediction using an artificial neural network
(ANN). The results of the experiment show that the
number, angle, and positioning of ultrasonic sensors
affect their ability to capture the human step region,
that is, 50×××70 cm under the experimental condition of
foot progression angle up to 30 degrees. The results
of the predictive performance of step-length using the
proposed ANN architecture demonstrate an improve-
ment.

Keywords: step-length, prediction, applied neural net-
work, shoe-type measurement device, ultrasonic

1. Introduction

The goals of this study were as follows: (1) to im-
plement the simulation results on an actual shoe-type
measurement device and evaluate the measurement scope
based on the results of previous simulations in our pre-
vious study; and (2) to establish a method of processing
the distance data from ultrasonic receivers to predict the
step-length of human steps using an artificial neural net-

work (ANN). The step-length is the distance between cor-
responding successive points of heel contact of the oppos-
ing feet.

Recently, an increasing amount of research has been
driven by interests in gait-assessment systems [1, 2].
Some researchers use an inertial measurement unit (IMU)
to measure stride length, an important spatial gait pa-
rameter, by processing temporal data [1]. Our previous
shoe-type measurement device is for measuring gait per-
formance such as step-length, step width, pressure dis-
tribution [3, 4], and attitude estimation during the swing
phase using IMU [5], as shown in Fig. 1. The previously
designed shoe contains ultrasonic receivers and transmit-
ters, pressure sensors, and IMU; it uses seven ultrasonic
transmitters and twelve receivers. The sensors are per-
ishable and fragile, so the measurement of gait parame-
ters is prone to error. In order to streamline the sensors
and reduce their number, the simulation technique was
designed [6]. In the previous iteration, step-length was
measured by integrating the ultrasonic sensors and gyro
data using a particle filter algorithm.

In order to improve this device’s performance, the sim-
ulation technique has been designed for our new shoe-
type measurement device [6], the results of which are con-
sist with the number of ultrasonic sensors (Murata ultra-
sonic sensors MA40S4R/S), the optimal sensor angle, and
the sensor’s position.

In this paper we introduce the actual implementation
of the new shoe-type measurement device, including the
scope of the measurement’s test. Finally, we discuss the
implementation of multi-layer perceptron (MLP) for step-
length prediction using data from ultrasonic sensors.

2. Implementation

The simulation results from the previous study [6] are
as follows: 1) There was a reduction in the number of ul-
trasonic transmitters (Tx) and receivers (Rx) from the pre-
vious shoe-type measurement device; 2) We found three
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Fig. 1. The previous shoe-type measurement device.

Fig. 2. The final representation of the region division, seven position of ultrasonic receivers (Rx), and three ultrasonic transmitters
(Tx); were based on the previous study.

ultrasonic Tx and seven Rx in each shoe as an optimal re-
sult, including their position and angle of each Rx based
on the maximum acoustic pressure that was received from
each Tx as well. An illustration of sensors positions is
shown in Fig. 2; it indicates the usage of three ultrasonic
transmitters and seven ultrasonic receivers in each shoe.
The implementation on the actual shoe-type measurement
device is shown in Fig. 3.

2.1. Test Setup and Experimental Design
To verify and validate the results of the simula-

tion, the test was conducted using ultrasonic transmit-
ters (MA40S4S) and ultrasonic receivers (MA40S4R).
Table 1 lists the specifications of ultrasonic sensors that
come from Murata Co., Ltd., Japan. We used a plan board
and made a 50×70 cm grid system, which is the grid size
10×10 cm as illustrated in Fig. 4.

The width of the board is determined based on the dis-
tance between two heels (walking base) for an average
person, that is, 5 to 13 cm [7–9]. We implemented it us-

Fig. 3. The implementation of the position and angle of
ultrasonic sensors based on the simulation.

ing a 50 cm width of a plan board in order to test the mea-
surement scope of the sensors. The length of the board is
determined based on the average length of the adult hu-
man step, i.e., half of the stride length, and followed the
simulation region. The mean stride length during normal
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Table 1. Specification of Murata ultrasonic sensor.

Part Number MA40S4R/S

Construction Open structure type

Using method Receiver and Transmitter
(dual use) type

Nominal frequency (kHz) 40
Sound Pressure (dB) 120±3 (20 Pa)
Directivity (deg) 80
Detectable range (m) 0.2–4
Dimension (mm) 9.9Ø× 7.1 height

Input voltage (Vp-p) 20 (40 kHz) continuous sig-
nal

(a) (b)
Fig. 4. Test setup and grid division for data retrieval. (a) the
board as a testbed; (b) grid division and grid number 1 to 45.

walking in adults ranges from 0.7 m [8, 10] to 1.3 m [2].
The C# acquisition data were used to collect the dis-

tances between ultrasonic transmitters and receivers. The
data retrieval in Fig. 4 was conducted when the left shoe
was on the grid (0,0) cm and the right shoe was moved
sequentially from the 1st grid to the 45th grid. Assuming
that all ultrasonic Tx and Rx are identical between the left
and right shoes, we retrieved all data from one side of the
human step, in this case, the right step. The positions of
ultrasonic Tx and Rx are defined from the results of sim-
ulation as shown in Fig. 2 as well as the implementation
as shown in Fig. 3. At every point grid, we retrieved the
distance between each receiver and transmitter pair from
25 combinations of foot progression angles. The test of
the measurement scope used the foot progression angle
up to 30 degrees which consists of five steps: 0, 5, 10, 20,
and 30 degrees. The 25 combinations came from these
five steps of foot progression angles for each shoe. We
used a protractor to determine the foot progression angle
as shown in Fig. 5.

2.2. Measurement of Scope Result
The test of measurement scope at every grid point us-

ing 25 shoe angle combinations resulted in almost all grid
points with a measurement scope of 100%. This means
that in all 25 shoe angle combinations, the distance data
between all Tx and Rx pairs are available. However, in
grid numbers 7, 8, 15, 16, 24, 32, and 40, we found that

Fig. 5. The combination of left and right foot progression
angle during data retrieval. The capturing figure illustrates
the 5-degree progression angle.

data are not available for all shoe angle combinations. In
the 8th and 24th grids, the scope of measurement is 48%,
whereas on the 16th grid, the scope of measurement is
56%. In the same way, we found that on the 7th grid the
measurement scope is 68%, whereas on the 15th, 32nd ,
and 40th grids, the measurement scope is between 70%
and 80%. The remaining grid points show 100% of mea-
surement scope. Fig. 6 shows the conclusion of the mea-
surement scope.

3. Step-Length Prediction

The step-length is one of the temporal gait parameters
measured during the double support phase. We measured
the step-length between the two heels of the left and right
foot. In a pathological gait, it is possible that the two-step
length is different; therefore, the step-length is one of the
important gait parameters for clinical gait analysis.

The ultrasonic waves commonly display nonlinear
propagation behavior due to the influence of angle direc-
tion and the relatively high amplitude to wavelength ratio.
The measurement of distances between each pair of re-
ceivers and transmitters in our implementation in the pre-
vious section shows the tendency of unsteady value. In
this case, a heuristic technique that can learn from the sit-
uation and provide results through intelligent guesswork
is needed. The ANN has the ability to learn through train-
ing and provide results by generalizing broad categories
from specific examples.
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Fig. 6. Final result of the measurement scope of ultrasound
Tx-Rx pairs.

3.1. Data Preparation During the Development of
ANN

At each grid point, we performed 25 combinations of
the foot progression angle; for each combination angle,
we retrieved 300 points of data. Therefore, we have 7500
points of data for each grid point for one pair of Tx-Rx.
Therefore, having 21 pairs of Tx-Rx, we have a total of
21×7500 of measurement data points for each grid point.
In the beginning, the total grid point was 45, as shown in
Fig. 4(b); therefore, we have 21×337500 data points. By
observing the data, we found that some grids, as described
in the previous section, are out of the measurement scope;
therefore, we assume some of those data to be noise for
the learning process in ANN. Although the learning pro-
cess in the network can handle noise in the training data,
too many erroneous training values may prevent the ANN
from learning the desired model [11]. The filtered data
now become 21×330600 from 21×337500 previously.
The data will be divided randomly into three parts of sam-
ples within its proportion as follows: training (70%), vali-
dation (15%), and testing (15%). The 21 pairs of measure-
ments between ultrasonic Tx and Rx were used as input
to the ANN for training, validation, and testing.

The ANN output is based on its architecture type. The
type A network output comes from the Euclidean distance
between the positions of the left shoe’s heel and the right
shoe’s heel. For example, the distance between coordi-
nate (0,0) to the 27th grid point, for which the coordinate
is (20,50), is 53.85 cm (refer to Fig. 4(b) for the grid
numbers). On the other side, the output of the type B
network is designed to be a multiplier coefficient for the
actual step-length output, to be described in detail in the
next subsection.

Fig. 7. Network type A: two-layer neural network with
hyperbolic tangent sigmoid and linear transfer function: X
input corresponds to the number of data pair between ultra-
sonic Tx-Rx, W-weights from input layer to hidden layer and
from hidden layer to output layer, b-biases of the neurons in
hidden and output layer.

3.2. Network Architecture and Training Algorithm
We focus on a multilayer network rather than a sin-

gle layer or recurrent network. The network is a two-
layer neural network, the purpose of which is two-stage
regression [12]. For regression, typically the number of
nodes in the output layer is one [12]; however, in com-
mon the multiple nodes in the output layer can handle
multiple quantitative responses. In accordance with these
statements, two different suggestions for networks will be
considered, as follows: a two-layer network with 1 node
in the output layer (network A), and a two-layer network
with 45 nodes in the output layer (network B). The pa-
rameters of the type A network are: (1) 21 input nodes,
(2) 20 neurons in the hidden layer, (3) 1 output node, (4)
the required training error (mse) = 0.1, (5) 1000 training
epochs, and (6) the maximum failures of validation check
= 6. The total of learnable parameters (weights and bi-
ases) is 461 parameters. The one output node represents
the Euclidean distance in linear representation. The stop-
ping criteria were the training error, the number of epochs,
or the maximum validation failures. We found that by us-
ing 20 neurons in the hidden layer, the number of train-
ing epochs was exceeded, and the validation checks never
exceeded the maximum limit. When a small number of
neurons were used, we noticed that the maximum fail-
ure of the validation checks occurred before 1000 epochs
elapsed. Fig. 7 represents the type A network.

Regarding network B, the parameters are as follows:
(1) 21 input nodes, (2) 20 neurons in the hidden layer,
(3) 45 output nodes, (4) the required training error (mse)
= 0.015, (5) 1000 training epochs, and (6) the maximum
failures of validation check = 6. During training, it was
observed that after 200 epochs, the mse requirement was
fulfilled. The difference between network A and network
B parameter settings is on the required mse; this is be-
cause the output target is different for both networks. The
45 output nodes represent 45 grids as in the simulation
design. The value of 0 or 1 was used in the output train-
ing data. The result of the network will be recognized
as the multiplier coefficient (yi), therefore the sum of all
multiplication between each output node and its related
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Fig. 8. Network type B: two-layer neural network with 45
output nodes.

Euclidean distance (Ei) on that node is the real output of
the network (Y ), as in Eq. (1). Fig. 8 shows the type B
network.

Y =
45

∑
i=1

yiEi . . . . . . . . . . . . . . (1)

The training process in the ANN has the purpose of
updating the weight value in the connection between neu-
rons. Many training algorithms have been found in the
process of finding the minima in error space and speed-
ing up the convergence. The multilayer network in this
study was trained using the Levenberg-Marquardt (LM)
algorithm. The LM algorithm blends the steepest descent
method (error back-propagation) and the Gauss-Newton
algorithm [13]. The LM algorithm integrates the speed
advantage of the Gauss-Newton algorithm and the steep-
est descent’s stability. It works by switching mechanisms;
around the area with complex curvature, the LM algo-
rithm uses the steepest descent algorithm; when the cur-
vature is adequate to make a quadratic approximation,
the LM algorithm uses the Gauss-Newton algorithm to
speed up the convergence. In [13] it is shown that the
Levenberg-Marquardt algorithm is stable and fast, it sur-
passes the steepest descent algorithm, the Newton algo-
rithm, and the Gauss-Newton algorithm.

The transfer function for the hidden layer is a hyper-
bolic tangent sigmoid, which compresses real numbers to
range from [−1,1], while the transfer function in the out-
put layer is linear.

3.3. Setup for the Experiment and Results
3.3.1. Setup and Condition for the Experiment

The MATLAB R© program was used to execute the
ANN training process and output calculation using net-
work types A and B. The reliability test for those net-
works was also conducted using a MATLAB R© program.
The sensor data acquisition from ultrasonic receivers was
made using C# program. The sampling rate for ultra-
sonic sensors and pressure sensor boards is 30 Hz in the
specification of the controller as suggested in [14]; how-
ever, finally we got 26 Hz as final sampling rate due to
the numbers of ultrasonic sensors and pressure sensors.
To verify and validate the prediction of the step-length,
we conducted a walking experiment using a shoe-type

(a)

(b)
Fig. 9. Measurement setup: (a) room setup for recording the
markers distance; (b) Shoe-type measurement device with
reflective markers.

Table 2. The experiment condition.

Parameter Value
Gait speed 0.266 m/s
Cadence 21 strides/min
Stance phase time 0.73 s

measurement device; the weight of the shoe was 1.2 kg
including ultrasonic sensors, pressure sensors inside the
insole board, IMU sensor, controller unit, wireless unit,
and batteries. For a reference measurement, the measure-
ment setup contained six OptiTrack R© cameras as shown
in Fig. 9(a). Reflective markers were placed on the heels
in order to measure distance during walking as shown in
Fig. 9(b).

The experiment of walking as explained in the next
subsection was conducted as a slow-walking type, us-
ing some observable conditions such as gait speed, ca-
dence, and stance phase time, is described in Table 2.
The measurement of gait speed comes from the average
of time divided by distance; time elapsed within the spe-
cific distance comes from motion-capturing time framing,
whereas the distance comes from the difference between
the finish and the start position of each walking task. The
measurement of cadence comes from the definition that
cadence (strides/min) is calculated by dividing 60 sec-
onds by a stride time (seconds) [15]. The measurement of
stance phase time comes from gyro (±1500 deg/s) (Log-
ical Product Co. Ltd., Japan); the stance time was mea-
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(a)

(b)
Fig. 10. The illustration of one task of walking experiment:
(a) One task of experiment consist of 3–4 steps of each foot
(the two-headed arrow indicates the step-length). (b) The
distance between two heels as a reference measurement from
motion captures system.

sured when the y-axis of gyro signal under the specific
threshold indicated that there is no foot movement; in this
case, we heuristically use 10 deg/s as a threshold and the
y-axis is the plantarflexion-dorsiflexion axis.

3.3.2. Results of the Experiment

The first result is the training process for the networks.
Network A took 55 minutes for the training process af-
ter 1000 epochs. As the learnable parameter number for
network B is larger than that for network A, the training
process for network B took 77 hours, and the performance
mse of 0.015 was reached after 200 epochs.

After finishing the training process for network A and
network B, we conducted the reliability test to ensure that
those networks were able to fit in all the data. The reliabil-
ity test data were chosen from trained and untrained data,
and the performance was measured using rmse (root mean
square error). The result for network A indicates that the
difference of rmse between trained and untrained data is
3.86%, while in network B, the rmse difference between
trained and untrained is 0.83%.

The actual implementation experiment is the walking
task. This experiment is derived from the average of six
walking tasks. In each task of the walking experiment, we
collected 3-4 steps from each foot. There are a total of 37
steps in this experiment, consisting of 19 right steps and
18 left steps. Fig. 10 shows an example of one task in the
walking experiment. In Fig. 10(a), the marked numbers
1 to 6 indicate that there are six instances of step-length
measurement. The corresponding distance between the
markers on the heels is shown in Fig. 10(b) by the motion-
capturing measurement system. Overall, the detailed ex-
periment results and the performance of step-length pre-
diction between network A and network B compared to

the reference are shown in Table 3.
We also compared the results of the step-length predic-

tion from the previous study when using the integration
of gyro and ultrasonic sensors in the particle filter algo-
rithm [3, 4]. The second comparison is from the work
of B. Mariani, et al. [1] with the prediction of stride
length using temporal IMU data. In the third compari-
son of prediction using 5 Hz differential GPS (DGPS) as
in [16], the step-length error was calculated using step
duration (0.53 ± 0.01 s) times the speed error per step
(0.8 cm/s), which is 0.42 cm in the results. Table 4 shows
the comparison results between ANN, particle filter, tem-
poral IMU data, and DGPS.

4. Discussion and Limitations of the
Experiment

4.1. Discussion

The result of the simulation has been concluded in
Fig. 2, resulting in seven ultrasonic receivers and three
ultrasonic transmitters. Using these sensors, the number
and its angle; the implementation has been conducted as
shown in Fig. 3. A test bed of 50×70 cm board area was
used in the implementation. The result of the measure-
ment scope in Fig. 6 shows some blank areas when the
shoe position is on the straight line, for example, the left
shoe on the coordinate (0,0) and the right shoe either on
the (10,0), (20,0), (30,0), (40,0), or (50,0). This result
was in line with the simulation design that the normal hu-
man steps fall either in the region IV or region VI. The
straight-line position of two feet in the frontal axis is not
found in normal walking. The distance between all ul-
trasonic receivers and transmitters was detected well until
the coordinate of (50,70) or grid number 1, as shown in
Fig. 6; this shows that the distance between two feet of
the normal human step can be detected using this system.

In the simulation the foot progression angle that was
used is 10 degrees because the normal foot progression
angle is 8–12 degrees [17]. The implementation result
shows that up to 30 degrees of foot progression angle, the
system still works well.

Comparing the training process between network A and
network B, it was found that the type A network has a
shorter training time and a smaller mean absolute error for
all foot step than network B. Network B has more learning
parameters to be updated in each epoch and showed that it
needed to be standardized by Eq. (1). By using the relia-
bility test, both types of networks were shown to be able to
make prediction generalizations. The differences in rmse
between the untrained and trained data in both networks
were below 5%. In regard to reliability, both networks are
ready to be used for the shoe-type measurement device.
Observing Table 3, it can be seen that network A has a
better performance than network B in the left step, right
step, and also in all step criteria. Finally, network A was
chosen due to its efficacy.

By using our combined data from ultrasonic trans-
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Table 3. The result of walking task experiment in details and a comparison between networks A and B; mean absolute error is
presented as mean (standard deviation) with all data in cm.

Network A Network B
Reference Prediction error Reference Prediction error

(cm) (cm) (cm) (cm) (cm) (cm)

Right step

58.95 56.77 2.18 58.95 56.13 2.82
57.19 55.33 1.86 57.19 55.62 1.57
51.64 49.6 2.04 51.64 49.54 2.1
51.4 50.15 1.25 51.4 49.8 1.6
47.61 44.97 2.64 47.61 43.9 3.71
50.45 49.37 1.08 50.45 49.82 0.63
49.16 47.34 1.82 49.16 48.4 0.76
50.3 48.05 2.25 50.3 47.2 3.1
31.36 30.82 0.54 31.36 29.62 1.74
47.71 45.42 2.29 47.71 43.49 4.22
45.21 43.45 1.76 45.21 42.22 2.99
47.23 45.78 1.45 47.23 43.66 3.57
32.5 31.84 0.66 32.5 29.71 2.79
38.93 36.73 2.2 38.93 40.92 1.99
44.13 44.75 0.62 44.13 42.83 1.3
39.42 37.2 2.22 39.42 41.11 1.69
42.94 41.11 1.83 42.94 42.08 0.86
37.33 35.56 1.77 37.33 41.73 4.4
45.67 43.45 2.22 45.67 43.31 2.36

Mean absolute error (sd) 1.72 (0.6) Mean absolute error (sd) 2.33 (1.11)

Left step

49.53 47.83 1.7 49.53 44.7 4.83
45.45 44.23 1.22 45.45 42.34 3.11
38.93 35.14 3.79 38.93 32.94 5.99
44.45 42.75 1.7 44.45 42.11 2.34
46.83 43.99 2.84 46.83 40.55 6.28
44.97 43.07 1.9 44.97 42.49 2.48
44.9 42.94 1.96 44.9 42.12 2.78
46.2 44.28 1.92 46.2 43.16 3.04
39.57 35.94 3.63 39.57 35.01 4.56
40.35 38.35 2 40.35 37.32 3.03
43.51 41.73 1.78 43.51 41.81 1.7
46.78 44.86 1.92 46.78 42.25 4.53
43.46 45.02 1.56 43.46 36.77 6.69
43.7 38.16 5.54 43.7 32.29 11.41
44.45 41.67 2.78 44.45 45.6 1.15
36.55 32.55 4 36.55 30.78 5.77
39.94 36.62 3.32 39.94 33.12 6.82
46.59 39.11 7.48 46.59 37.81 8.78

Mean absolute error (sd) 2.84 (1.56) Mean absolute error (sd) 4.74 (2.57)
Mean absolute error (sd) of all steps Network A 2.26 (1.3) Network B 3.50 (2.3)

mitters and receivers as inputs and by choosing the
Levenberg-Marquardt algorithm as a training function, we
were able to solve our problem in step-length prediction.
The error of the prediction as concluded in Table 3 indi-
cates that the error of the left step is larger than the error
in the right step. We presume that between the left and
right shoe, the position and angle of sensors is not exactly
identical; this is due to the manual construction or hand-
made construction. Since the training data come from one
side of the step, that is, the right step; so we found that the
prediction performance of the right step surpasses the per-
formance of the left step. This is also a remarkably coun-
sel for our experience in using artificial neural networks
for solving the shoe-type measurement device problems

Table 4. The comparison of average error of step-length
prediction using four different methods; presented as aver-
age (standard deviation) with all data in cm.

Methods Average error
ANN 2.26 (1.3)
Particle filter 4.00 (2.0)
Inertial sensor 1.50 (6.8)
DGPS 0.42 (0.01)

in future study.
The comparison study of the step-length prediction has

been shown in Table 4. At a glance, the prediction us-
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ing DGPS by P. Terrier, et al. [15] surpasses other meth-
ods. However, GPS has shortcomings such as the high
cost of professional equipment and is recommended only
for outdoor analysis. The second-best prediction perfor-
mance was proposed using inertial sensor by B. Mariani,
et al. [1]. However, the complexity of inertial sensor data
processing and additional computational time might be
one of the reasons to choose the ultrasonic sensor and
ANN as a processing method for the shoe-type measure-
ment device. Using the same kind of sensor as inputs, the
ANN method surpasses the particle filter method; how-
ever, we do not claim that this condition is a global case,
as many factors might influence reducing the particle fil-
ter method, such as the synchronization with gyro data as
in [3], the difference of experimental conditions, and the
number of sensors used.

4.2. Limitations
The results of the simulation [6] and implementation

have succeeded in determining the position and angle of
ultrasonic sensors. Likewise, the step-length prediction
results showed an improvement of performance from the
previous study. From these results, we were able to en-
sure that the mechanism of simulation, implementation,
and ANN architecture design have the influence to im-
prove our shoe-type measurement device. Despite these
improvements, there are several major limitations of the
experiment that are described below.

The first limitation of the experiment is in the area of
its scope. In this study, we used a 50×70 cm board based
on a normal human walking area. In addition, we used
the 30 degrees of maximum foot progression angle (out-
toeing). However, in the case of some gait impairments
due to disease or injury, the foot progression angle is pos-
sibly in-toeing; it is also possibly that the walking base
is more than 50 cm. For the time being, the shoe-type
measurement system is suitable for a normal gait.

The second limitation is the design position of the ul-
trasonic transmitter on the medial heel of both feet with
a 60-degree azimuth angle. This position, despite its ef-
ficacy to measure the distance on the range of the human
step, has its flaws. It cannot precisely measure the dis-
tance between the two heels when the position of the foot
is in a straight line of frontal axis to the body. This has
been shown in Fig. 6 on grid numbers 8, 16, 24, 32, and
40.

The third limitation is related to the use of an artifi-
cial neural network as the two-stage regression. The step-
length prediction using an artificial neural network has its
flaws. One problem is that the ANN is like a black box;
i.e., the mathematic model of the prediction cannot be de-
fined. Another problem is that we cannot know which the
final network is the best overall; it depends on the initial
weight and biases in every training process.

The fourth limitation is related to experiment condi-
tions; as shown in Table 2, we used a slow speed of walk-
ing in this experiment. In the future, both normal speeds
and fast speeds will be considered. Also, in this paper, we

do not integrate each joint movement of the lower extrem-
ities and trunk as well as the analysis of plantar pressure.
As a future work, the integration of body link model and
sensors’ measurement will be considered in order to ana-
lyze complete gait.

5. Conclusion

One of the main contributions of this paper is the vali-
dation of the measurement scope of step-length by imple-
menting the simulation result as an actual shoe-type mea-
surement device. The range of the human step and foot
progression angle were successfully cope using the num-
ber of sensors and its angle based on the actual measure-
ment; the results of implementation have been concluded
in Fig. 6 as the measurement scope diagram.

One of the real-world applications already mentioned
as an objective is the prediction of step-length. By us-
ing our shoe-type measurement device, the prediction of
human step-length can be achieved by implementing an
artificial neural network to solve the nonlinearity of ul-
trasonic data. Despite the efficiency of the method, it
still has its flaws; the step-length prediction error of the
human walking experiment has been shown in Table 3.
Nevertheless, as a future problem to be solved, we hy-
pothesized that another spatial parameter of gait such as
foot progression angle is possible to predict using these
ultrasonic receivers’ data.
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