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Chapter

Designed Mesoporous Materials 
toward Multifunctional Organic 
Silica Nanocomposites
Hendrik O. Lintang and Leny Yuliati

Abstract

Functionalized mesoporous silica materials (MSMs) using grafting (post-
synthesis) and one-pot (co-condensation) synthesis methods of organic functional 
groups (periodic mesoporous organosilicas, PMOs) have been developed for many 
emerging applications. To improve the functions, designed MSMs have received 
particular attention using an organic motif as a molecule of surfactants for the tem-
plate synthesis with a silica source in the sol-gel reaction. The resulting mesoporous 
silica materials can provide characteristic multifunctional nanocomposites consist-
ing of a monomer for synthesizing polymer in the silicate nanochannels. Moreover, 
the nanocomposites can be also synthesized using a self-assembled organic motif 
for organizing one-dimensional structure in the silicate nanochannels. The 
resulting hybrid nanomaterials have been mainly reported to provide fluorescent 
properties. However, the utilization of phosphorescent nanocomposites for specific 
applications has not yet reported so far. By utilizing a self-assembled metal com-
plex (organometallic), this chapter particularly highlights recent achievements of 
designed mesoporous silica materials for the fabrication of advanced luminescent 
nanostructures with phosphorescent properties where the potential applications 
will be discussed in detail for self-repairing and thermally resistive materials, metal 
ions sensors, template synthesis nanoparticles, and catalysts. Such better and novel 
performance can be only achieved using a designed template for the sol-gel synthe-
sis of mesoporous silica nanocomposites.

Keywords: hybrid material, luminescence, mesoporous silica, metal complex, 
nanocomposite, nanomaterial, one-pot synthesis, organosilica, surfactant, template

1. Introduction

Silica sources have been widely used for the preparation of solid containing 
pores (porous) materials. According to definition by International Union of Pure 
and Applied Chemistry (IUPAC) in 1972, porous materials can be defined based 
on the pore size (diameter). Materials with pore size less than 2 nm, between 2 to 
50 nm and 50 to 7500 nm as well as above 7500 nm are classified as microporous, 
mesoporous, macroporous and megapore materials, respectively [1]. Such porous 
materials have been widely used for many applications due to their characteristics in 
pore size and surface area [2].

Japanese and American researchers have independently invented ordered 
Mesoporous Silica Materials (MSMs) in early 1990 using various kinds of surfactants 
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and silica sources. Based on the research by Japanese researchers, the first ordered 
MSMs have been discovered by using intercalation of cationic micelles in a layered 
silicate kanemite [3, 4]. These MSMs have a hexagonal array of uniform channels 
that is called as Folded Sheet Materials (FSM)–16. As shown in Figure 1, the FSM-16 
was prepared from a condensation of three-dimensional silicate networks through 
sodium (alkali) cation exchange of kanemite with organic cations of alkyltrimethyl-
ammonium ions having chloride anion. On the other hands, American researchers 
from Mobil Research and Development Corporation [5, 6] have also discovered 
different ordered MSMs using cetyltrimethylammonium bromide (CTAB) as a 
surfactant for templating silica framework. The resulting MSMs have been classified 
as Mobil Composition of Matters (MCMs)–41 families consisting different geometry 
of MSMs such as hexagonal (MCM-41), cubic (MCM-48), and lamellar (MCM-50).

Liquid Crystal Templating (LCT) mechanism has been proposed for the forma-
tion of the MCMs with a hexagonal structure. In particular, surfactant in their 
liquid crystal properties (lyotropic) plays an important role for the formation of 
MCMs [5, 6]. Figure 2 shows the self-assembly of surfactant in the presence of 
silica sources to form mesoporous silica. Typically, the surfactant such as CTAB 
self-assembles to form a micelle and then it will form a rod micelle. Such rod micelle 
at the certain concentration (critical micelle concentration, CMC) can self-assemble 
to form a structure with a hexagonal geometry. In the presence of organic template, 
the interaction can occur through oligomerization of silica source to hexagonal 
packing under acidic or basic condition. It will then produce mesostructure silica 
containing the surfactant molecules in the silicate nanochannels. By using calcina-
tion method, both groups have demonstrated that highly ordered and well-defined 
nanoscopic channels of mesostructures can be designed and then synthesized with 
good characteristics such as large surface areas, high thermal and mechanical stabil-
ity, uniform channel distribution, and pore size modification.

Recent research in the development of ordered MSMs have been widely focused 
using different kinds of surfactants. For example, Hexagonal Mesoporous Silica 
(HMS) with slightly disordered hexagonal structure and thicker walls as well as 
superior thermal stability has been synthesized using neutral amine surfactants [7]. 
By using the same type of surfactant, Michigan State University (MSU-1) has been 
synthesized using neutral polyethylene oxide (PEO) surfactant [8]. Moreover, Santa 
Barbara Amorphous (SBA)-15 has been invented with good characteristic such as 
large pore size and well tunable in the range of 5–30 nm, thicker pore walls, and two-
dimensional (2D) hexagonal structure as well as higher hydrothermal stability. SBA-
15 has been synthesized by using amphiphilic triblock-copolymer of poly(ethylene 
oxide) and poly(propylene oxide) or Pluronic P123 as a surfactant [9].

Such various types of ordered MSMs have been potentially studied for different 
kinds of applications in catalysts, adsorbents, molecular sieves, drug delivery, sensor, 
insulating materials and nanometer-scale hosts for optical and electronic materials. 

Figure 1. 
Synthetic scheme for the formation of Folded Sheet Materials (FSM)–16 through calcination of as-synthesized 
mesostructure silica from the sol-reaction of kanemite as a silica source and cationic surfactant.
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However, the performance of bulk ordered MSMs have been limited in their applica-
tions as mentioned in several review journals [10–14]. Hence, ordered MSMs have been 
functionalized with organic functional groups as multifunctional nanocomposites.

2. Functionalization of mesoporous silica materials

Functionalization of MSMs with organic functional groups became a major 
topic of research because it can be used for modifying their chemical properties for 
specific applications at the surface, wall and/or channel at the nanoscale. Moreover, 
silica frameworks can be designed with specific properties such as hydrophobicity, 
hydrophilicity, polarity, catalytic active sites, and optical as well as electronic activi-
ties so that the performance can be improved in their applications. In this chapter, 
the functionalization of MSMs will be reviewed using post-synthetic (grafting) 
and one-pot (co-condensation) methods [15–20] where short discussion will only 
be provided consisting of the illustration for the formation of mesoporous silica 
based on the usage of surfactants. At the end of this subheading, these approaches 
will be then developed as a template sol-gel synthesis for designed multifunctional 
MSMs where organic chemists can design the desired functions of MSMs for better 
performance.

2.1 Functionalization with post-synthetic method

Post-synthetic method has been early proposed for functionalization of ordered 
MSMs by grafting silanol groups consisting of functional organic moieties (F star) 
at the surface of ordered MSMs. Figure 3 shows the method where the functional 
groups in organosilanes can form a covalent bonding with silanol of the MSMs. This 
method has been firstly introduced from the early discovery of MCM-41 [6] as well 
as kanemite [3] using trimethylsilyl chloride ([(CH3)3SiCl]) and hexamethyldisilox-
ane ([(CH3)3Si)2O]).

Figure 2. 
Synthetic scheme for the formation of Mobil Composition of Matters (MCMs)–41 with a hexagonal from calcination 
of mesostructure silica from sol-gel reaction of self-assembled surfactant in their micelle form with a silica source.
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In the post-synthetic methods, three main approaches have been reported so 
far using organosilanes and their further modification. Such approaches can be 
described as follows [17, 21]:

a. First approach using modification of silica surface with organosilanes such as alkox-
ysilanes [22, 23], chlorosilanes [6, 24, 25], and silylamines as well as disilazane [26].

b. Second approach using modifications of previously grafted surface under proce-
dures (a) with other functional groups.

c. Third approach using transformation of grafted surface under procedures (a) and 
(b) with additional treatments.

The above approaches can be categorized as grafting with passive (low reactiv-
ity) and active (high reactivity) surface groups [16]. However, pore blocking and 
non-homogenous distribution of organosilanes in the silicate nanochannels are 
the main problems for the improvement of the properties and performance [19]. 
Therefore, the functionalized MSMs have been mainly developed for applications in 
the removal of metal ions and adsorbents [16].

2.2 Functionalization with co-condensation method

As shown in Figure 4, co-condensation method has been used for the func-
tionalization of ordered MSMs by mixing organosilanes with silica source and 
surfactant or structure-directing agent during the sol-gel synthesis. In this method, 
covalent bonding of a nonhydrolyzable Si▬C bond in organosilanes will be hydro-
lyzed in the sol-gel reaction to form a silica network of mesostructure silica with 
functional groups in the walls and/or pores [16–19]. Generally, these functional 
materials have been mainly used for development of optical nanocomposites where 
specific organic chromophores with such properties can be encapsulated [27].

Two main approaches have been used for co-condensation method based on 
the types of organosilanes such as mono and bridge silanes attached in the organic 
functional groups:

2.2.1 Co-condensation method with mono-organosilanes

Co-condensation method with mono-organosilanes has been carried out using 
mono-functionalization of organosilane as firstly proposed with a simple structure. 

Figure 3. 
Post-synthetic method for the functionalization of ordered MSMs.



5

Designed Mesoporous Materials toward Multifunctional Organic Silica Nanocomposites
DOI: http://dx.doi.org/10.5772/intechopen.84875

For instance, phenyltriethoxysilane (PTES) or n-octyltriethoxysilane (OTES) [28], 
3-aminopropy1trimethoxysilane (APTMS) and 2-cyanoethyltrimethoxysilane 
(CETMS) [29] and vinyltriethoxysilane (VTES) [30] have been used as mono-
organosilanes. However, the main problems in this method have been found such as 
only 40% of maximum functionalization, reduction in pore diameter and volume as 
well as decreasing of specific surface area and difficulty in removing of surfactants.

Recently, synthesis of ordered MSMs with mono-organosilanes as both a 
silica source and a surfactant or structural-directing agent was reported using 
n-tetradecyldimethy(3-trimethoxysilylpropyl) ammonium chloride [31]. As shown 
in Figure 5, Shimojima and Kuroda in 2003 [32] have initiated the use of more 
complicated organosilane structure such as dendritic type of alkoxysilyl-terminated 
alkyloligosiloxane [32]. One year later, using dendrimer carbosilanes with its first 
and second generations, Landskron and Ozin then modified such more compli-
cated structure of the dendritic organosilanes to prepare “Periodic Mesoporous 
Dendrisilicas” (PMD) as reported in Science 2004 [33]. However, the functional 
groups attached to the organosilanes in ordered MSM have not yet been applied for 
specific functions due to its low functionality in the silica framework.

Zhang et al. in 2004 [34] was introduced another approach to improve the func-
tion of MSMs even the functional surfactant has rigid structure. In this case, they 
have introduced an amphiphilic alanine-containing alkoxysilane with a cleavable 
alkyl chain at the ester group and condensable cationic head-group at siloxane 
(Lizard template) as shown in Figure 6. When they performed acid hydrolysis 
to the template, it can provide alanine functional groups consisting of cationic 
ammonium head-group with silanol. Interestingly, alanine functional group in 
this hybrid material can be used as a heterogeneous catalyst for the acetalization of 

Figure 4. 
Co-condensation method for the organic modification of ordered MSMs with organosilanes.

Figure 5. 
Formation of ordered MSMs from siloxane-based dendritic bearing long alkyl chain as a surfactant and a 
silica source in the sol-gel synthesis of MSMs.
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cyclohexanone in ethanol with high conversion [35]. Such performance was pro-
posed based on the formation of hydrogen bonding from the presence of cyclo-
hexanone and ethanol at the hydrophobic domain at the inner shell and hydrophilic 
domain at the outer shell with core-shell interface containing amide and carbonyl 
groups.

2.2.2 Co-condensation method with bridged-organosilanes

Co-condensation method with bridged-organosilanes has been carried out using 
two trialkoxysilyl groups connected by a functional organic bridge, called as bis-
organosilanes to produce “Periodic Mesoporous Organosilicas” (PMOs) as invented 
independently in 1999 by three research groups [15, 36, 37]. In contrast to above 
methods, the organic functional groups are incorporated in the three-dimensional 
network structure of the silica wall through two covalent bonds as shown in Figure 7. 
They are many organic functional groups have been used as bis-organosilanes where 
the F star are methane, ethane, benzene, stilbene, azobenzene, phenyl vinylene, 
cyclic ethane, dendritic ethane, etc. and then used for the synthesis of MSMs with 
homogeneous distribution of the functional groups in the wall.

Inagaki et al. in 2002 [38] reported one of good example in the synthesis of 
PMO. They have used 1,4-bis(triethoxysilyl)-benzene (BTEB) where the organosilane 
is based on benzene structure as the functional group. After reaction in a basic condi-
tion using sodium hydroxide for 20 hours, the mesostructure silica was successfully 
synthesized as a white precipitate, and was extracted to remove the surfactant to give 
plate-like particles of PMO. It shall be noted that PMO has found to form an alternately 
structure from the layers of hydrophilic silicate and hydrophobic benzene.

Figure 7. 
Co-condensation method for the synthesis of ordered periodic Mesoporous Organosilicas (PMOs) with bridged-
organosilanes and surfactant.

Figure 6. 
Formation of ordered MSM from a “lizard” template through sol-gel synthesis and followed by acid hydrolysis.



7

Designed Mesoporous Materials toward Multifunctional Organic Silica Nanocomposites
DOI: http://dx.doi.org/10.5772/intechopen.84875

2.3 Functionalization with template sol: Gel synthetic method

Since PMOs have been only developed to functionalize the pore wall of MSMs, 
it is really interesting to guarantee the presence of organic functional groups in the 
silicate nanochannels. Moreover, the channels of the silicate framework shall be 
fully occupied by the organic moieties so that they are many functional sites for spe-
cific applications. Toward this expectation, it is necessary to design the surfactant 
containing of functional organic moieties. Therefore, templated sol-gel synthesis 
method has been proposed using a surfactant in the functionalization of MSMs to 
form desired multifunctional nanocomposites. This approach has been proposed by 
using surfactant bearing organic functional groups (called as a “functional surfac-
tant”) as a template in the sol-gel synthesis of ordered MSMs.

Three research groups have firstly proposed in the synthesis of ordered MSM 
by functional surfactants using amphiphilic diacetylenic monomers [39, 40] and 
an amphiphilic phthalocyanine [41]). In particular, the functional organic groups 
will covalently bond in the surfactant molecules where it can be prepared in few 
step organic reactions. By using this functional surfactant as shown in Figure 8, the 
resulting functional MSMs in the sol-gel synthesis will guarantee dense filling of 
the silicate nanochannels with the acetylenic functional groups [39, 40]. Therefore, 
based on the desired functions, the researcher shall decide the organic moieties to 
be attached covalently and number of functional groups so that the retro-synthesis 
shall be determined for the synthesis of that surfactants.

In this chapter, the template sol-gel synthesis method will be discussed based on 
the polymerizable and self-assembled functional surfactants:

2.3.1 Polymerizable surfactant

Polymerizable surfactant as a template in the sol-gel synthesis of ordered MSMs 
has been independently introduced in 2001 using diacetylene monomers [39, 40]. 
Figure 9 shows the example using cationic type of functional surfactants as reported 
by Aida and Tajima [39]. Polymerization of the resulting mesostructured materials 
containing dense filling of diacetylenic monomers by photo or thermal treatments 
gave polydiacetylenes in the nanoscopic channels. In particular, these polydiacetylene 
nanocomposites have showed photoluminescent hybrid materials with elongated 
effective conjugation compared to its polymer from monomer directly, indicating the 
confinement effect in the nanoscale.

Figure 8. 
Co-condensation of ordered MSMs using a surfactant bearing organic functional group as a template for the 
sol-gel synthesis with silica source.
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Figure 10. 
Sol-gel synthesis of ordered MSMs using amphiphilic diacetylenic monomers surfactants as a functional 
template.

Figure 10 shows the example using amphiphilic type of functional surfac-
tants as reported by Lu et al. [40]. Interestingly, they have exhibited chromatic 
of the blue nanocomposite films to red emission. Such changes have showed 
not only solvatochromic properties upon exposure to polar solvents to diffuse 
to hydrophilic ethylene glycol parts, but also thermochromic properties upon 
heating to form interaction between silanol moieties and alkyl side-chains via 
hydrogen bonding, as well as mechanochromic properties upon abrasion to form 
mechanical damage.

In 2003, pyrrole monomers having C10 and C12 alkyl chains were used as 
a template to synthesize mesoporous silica with both a hexagonal and lamellar 
geometries. The ordered MSMs with dense filling of pyrrole monomers could 
be oxidatively polymerized by simply dipping the spin-coated film into initiator 
FeCl3 (2 M) in diethyl ether for 1 min [42]. The resulting polypyrrole chains insu-
lated in the hexagonal silicate nanochannels significantly suppressed recombina-
tion of polarons into bipolarons, while the lamellar silicate nanochannels afforded 
spatial freedom for the electron recombination. In the same year, thiophene was 
used as a template for the polymerization in mesoporous silica to give photolumi-
nescent silica nanocomposite with an alignment of conjugated 100 nm polymer 
chains in the channels [43].

Other functional polymer nanocomposites have received great attention for 
the development new materials with good characteristics. To work in this field, 
redox active functional groups using styrene as a monomer and template was 
successfully prepared as mesostructured silica/polystyrene nanocomposite film 
with characteristic of charge transport through a diffusion process [44]. In other 
reports, luminescent polymers were also successfully prepared using phenylene 
ethylene [45] and thiophene [46] as a template to give poly(phenylene ethylene) 
and poly(thiophene) where the nanocomposites showed fluorescent proper-
ties with good properties such as higher anisotropic degree and tunable color 
emission.

Figure 9. 
Sol-gel synthesis of ordered MSMs using cationic surfactants bearing organic functional group of diacetylene 
monomers as a functional template.



9

Designed Mesoporous Materials toward Multifunctional Organic Silica Nanocomposites
DOI: http://dx.doi.org/10.5772/intechopen.84875

2.3.2 Self-assembled surfactant

Self-assembled surfactant as a functional template in the sol-gel synthesis of 
ordered MSMs has been firstly introduced using an amphiphilic copper phthalocya-
nine as shown in Figure 11 [41]. To synthesize the surfactant, the eight decoxy of 
hydrophobic parts containing triethylene glycol of hydrophilic part was synthesized 
as amphiphilic side chains in the alkyl bromide. Reaction with copper(I) cyanide 
through Williamson ether substitution reaction, amphiphilic copper phthalocya-
nine can be synthesized. This surfactant will form disk-shape (discotic) for self-
assembly via noncovalent π–π stacking interactions so that 1D molecular assembly 
can be insulated within the channels of mesoporous silica.

The columnar assembly in the channels of ordered MSMs can be also synthe-
sized by using charge-transfer interactions of amphiphilic triphenylene as a donor 
and various acceptors with 1 to 1 mole ratio [47]. In this case, the charge-transfer 
adduct shall able to form columnar assembly where the donor and acceptor mol-
ecules shall be able to be alternated. Without the acceptor molecule, less ordered 
MSMs have been the amphiphilic triphenylene as a donor molecule prepared. By 
selecting specific acceptor molecules to be paired, the resulting transparent nano-
composite films can provide color-tunable materials with blue to red with peak 
top of absorption at 490 nm for 2,4,7-trinitro-9-fluorenone (TNF), 548 nm for 
1,2,4,5-tetracyanobenzene (TCNB), 615 nm for 2,3,6,7,10,11-hexacyano-hexaazat-
riphenylene (HAT), 700 nm for chloranil (CA) and 890 nm for, 7,7,8,8-tetracyano-
quinodimethane (TCNQ ).

Since less ordered MSMs was found when triphenylene as a donor and func-
tional surfactant was only used in the sol-gel synthesis without the presence of 
acceptor molecules, the new strategy to synthesize high ordered MSMs is required. 
By using ethanol vapor in the closed system to the as-synthesized mesostructured 
silica, the same triphenylene was immersed to ethanol vapor in one drop to give 
high ordered MSMs in 3 hours at room temperature [48]. The ethanol vapors have 
a function to increase structure regularity as shown from increasing intensity of 
the main diffraction peak at d100. Another approach was reported by using the 
hydrophilic version containing of 18 ethylene glycol side-chains of HBC for the 
synthesis of nanocomposites [49]. The HBC was firstly prepared using Pd(PPh3)4 
in CuI as catalyst for coupling reaction with hexaiodo-peri-hexabenzo-coronene in 
the presence of Pd catalyst. Such high hydrophilicity HBC was only produced MSMs 
with less ordered structure as shown from less intense of the main diffraction peak 
at d100. Hence, it is really necessary to balance the amphiphilicity from the presence 
of hydrophobic and hydrophilic side chains of the functional surfactant when there 
is only one molecule as a template.

Figure 11. 
Sol-gel synthesis of ordered MSMs using amphiphilic copper phthalocyanine as a template.
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Luminescent nanomaterials with phosphorescent properties have received 
particular attention for the development of optical materials. To this aims, a weak 
interaction of metal–metal bonding can be also used to construct columnar assem-
bly with luminescent property. Otani et al. [50] was reported that an amphiphilic 
bispyridine platinum(II) complex, as synthesized from 2,2-bipyridine and K2PtCl4, 
can be used as a functional surfactant where Pt double-salt from linear chain of 
Pt-Pt metallophilic interactions between Pt(II) complex with another Pt(II) salt can 
self-assemble with silica source to form luminescent nanocomposites. Interestingly, 
these nanocomposites showed phosphorescent properties with an emission peak 
centered at 619 nm upon an excitation at 495 nm.

Recently, trinuclear gold(I) pyrazolate complex ([Au3Pz3]) bearing amphiphilic 
side chains was successfully synthesized to be used as a functional surfactant. This 
complex showed not only liquid crystalline properties with mesophase range over 
a wide range of room temperature, but also phosphorescent properties around 
700 nm with red emission from Au(I)-Au(I) interactions. Moreover, this surfactant 
can be utilized as a template for synthesizing transparent mesoporous silica nano-
composite films. The resulting mesoporous silica film ([Au3Pz3]/silicahex) revealed 
not only phosphorescent properties of red light at (693 nm with the same excitation 
wavelength) and longer lifetime (7.8 μs) but also perfect self-repairing with step-
wise heating until 140°C in the nanoscale [51]. Such performance can be achieved 
due to a nanoscopic template effect where the ethylene glycol parts at the side 
chains anchored in the silica wall play an important role to induce the self-repairing 
of the pyrazole core on cooling at room temperature thermodynamically. In higher 
temperature under kinetic control, it is impossible to be achieved due to the strong 
interaction of the paraffinic side chains. In contrast, such self-repairing in the 
nanoscale from the light-emitting capability of highly phosphorescent nanocom-
posites with a hexagonal structure cannot be observed with its lamellar geometry 
[Au3Pz3]/silicalam and bulk Au3PZ3.

In the development of thermally resistive nanomaterials, by using a thin film 
[Au3Pz3]/silicahex, the phosphorescent complex in the nanochannels was treated 
with thermal treatment at the elevated temperature with stepwise or direct heating. 
Based on the phenomena of thermal quenching, the nanocomposites showed self-
repairing capability at room temperature autonomously when was directly heated 
to 160°C with a heating time in 11 min (luminescent intensity in 59%) compared 
to stepwise heating in 52 min for every measurement in every 10°C (luminescent 
intensity in 20%). Such performance can be supported by the presence of endo-
thermic peak as shown from differential scanning calorimetry (DSC) thermogram 
at 164°C (first heating) or 158°C (second heating). Both peaks can be assigned as 
a melting temperature from the deformation of metallophilic interaction in the 
columnar assembly. Hence, self-healing capability in these nanocomposites can 
be designed based on the heating treatments where perfect autonomously resto-
ration can be achieved with stepwise heating (20–140°C) [51] or direct heating 
(20–160°C) [52]. Moreover, such capability can be also observed when the stepwise 
heating was performed until 200°C [53]. All of these phenomena can be monitored 
by not only the emission changes but also color changes. Hence, this performance 
can be potentially utilized as temperature sensor with imaging of the changes in 
intensity and color emission [54]. Such performance cannot be achieved for bulk 
luminescent compounds or materials with a lamellar structure where thermal 
quenching can be easily occurred to reduce the light-emitting capability [51–54].

Metal ion sensors have also received deep attention in the research of nanoma-
terials. In our study, thin film of this phosphorescent mesoporous silica nanocom-
posite was applied as a chemosensor of silver ions by simply dipping the thin film 
into the solution of silver triflate (10–100 μM of AgOTf). The transparent thin film 
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[Au3Pz3]/silicahex with red emission of Au-Au interaction at 693 nm was changed to 
green (486 nm) of Au-Ag interaction. Moreover, the XPS study with depth profiling 
indicates that Ag+ ions were permeated into the silicate nanochannels where the 
original red emission can be simply recovered in chloroform using cetyltrimethyl-
ammonium chloride with the same concentration [55]. Figure 12 shows the above 
phenomena from the synthesis of amphiphilic surfactant [Au3Pz3] as a template for 
the sol-gel synthesis of mesoporous silica nanocomposite [Au3Pz3]/silicahex as a thin 
film and then was used for sensing Ag+ ions with color changes from red to green.

Gold nanoparticles (AuNPs) have also received great attention in many applica-
tions. In our research group, the resulting [Au3Pz3]/silicahex can be used as a source 
to form AuNPs in the silicate nanochannels as shown in Figure 13. It is important to 
be noticed that the columnar assembly of [Au3Pz3] was fully occupied the silicate 
channels so that it can provide dense filling of AuNPs in the pore. By using the heat 
treatment with calcination until 450°C for 3 hours, we have found that the transpar-
ent thin film [Au3Pz3]/silicahex was changed pink thin film, indicating the formation 
of AuNP/silicahex. The formation of AuNPs were confirmed by using TEM with 
the appearance of spherical particles, XRD with the presence of a diffraction peak 
at 38.2° and UV-Vis spectrometer with the presence of surface plasmon resonance 
(SPR) peak at 544 nm [56]. Moreover, by using thermal hydrogen treatment at 
250°C for hours, it provided the purplish-pink thin film with SPR peak at 558 nm 
due to the decreasing of particle size [57]. On the other hands, the main diffraction 
peak at the small-angle area for indicating the hexagonal structure were shifted 
to higher angle due to the formation of more higher order structure with the same 
geometry and increasing in pore size. Such template synthesis of nanoparticles can 
be performed with the confinement effect of gold complexes in the silicate nano-
channels. Further research on the detail investigation of the effect on temperature 
during the heat treatments and applications of AuNPs nanocomposites such as a 
catalyst will be the interesting reports to be discussed.

Figure 12. 
Sol-gel synthesis of ordered MSMs [Au3Pz3]/silacahex as a transparent thin film from the pale yellow of sticky 
amphiphilic trinuclear gold(I) pyrazolate complex [Au3Pz3] as a template and then the utilization for the 
detection of Ag+ ion to form Ag@[Au3Pz3]/silcahex.

Figure 13. 
Thermal treatments for the synthesis of AuNPs in the silicate nanochannels.
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3. Conclusions

It can be concluded that ordered MSMs have been organically functionalized 
with post-synthetic grafting and co-condensation methods with organosilanes. 
However, these methods gave many limitations in their applications. To solve these 
issues, new functionalization approach with amphiphilic polymerizable monomer 
and self-assembled discotic surfactants, called as a functional surfactant, have been 
used as both a template and an attached-organic functional group based on the 
desired function in the sol-gel synthesis method. The resulting mesoporous silica 
nanocomposites in the powder or thin film have gave excellent properties compared 
to the bulk form. Since noncovalent interactions have received many attentions in 
the development of soft matters, the utilization of this weak π–π and metal–metal 
bondings as a discotic surfactant was utilized for templating mesoporous silica 
nanocomposites. By using phosphorescent metal complex, mesoporous silica/gold 
complex nanocomposite with a hexagonal structure was successfully fabricated 
as a thin film with good properties such as self-repairing in the nanoscale, ther-
mally resistive and imaging materials, metal ion sensor, and template synthesis 
of nanoparticles. Toward these applications, it is possible to use the resulting gold 
nanoparticles as a heterogeneous catalyst in catalytic reactions. Another outlook 
of these designed nanocomposites is the potential to engineer the silica wall so that 
the channel and wall can simultaneously work to give synergistic effect on their 
applications. Moreover, ordered MSMs with chiral and photochromic columnar 
assemblies with combination of discotic surfactants and condensable siloxanes will 
be also interesting perspective for the development of memory nanomaterials.
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