Conference Program & Extended Abstract The Natural Pigments Conference for South-East Asia In Conjunction with: LCMS WORKSHOP from SHIMADZU ### RESEARCH AND DEVELOPMENT ### OF PIGMENT-BASED INNOVATION AND TECHNOLOGY University Va Fong, Mana Indonesia 22-23 AUGUST 2016 The Core R&D Center, Universitas Ma Chung Malang, East Java, Indonesia #### Organized by: #### Partners: #### Supported by: ## **PREFACE** The 3rd Natural Pigment Conference for South-East Asia (NP-SEA) Secretariat Office Ma Chung Research Center for Photosynthetic Pigments (MRCPP) Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151 East Java, INDONESIA Tel./Fax +62 341 550 171/175, E-mail: mrcpp@machung.ac.id ### Opening Remark from The Chairman of The 3th-NPSEA Dear researchers and friends, On behalf of the organizing committee, I would like to give you a warm welcome in the 3rd Natural Pigments Conference for South-East Asia (NP-ŠEA) 2016. Natural pigments are the most obvious and eye-catching substances that can be found in flowers, leaves, bird feather, algae, photosynthetic bacteria, and many more. These pigments have been used as bountiful colorants for food, cosmetics, and textiles and very close connected to the culture of South-East Asia. If we look closely, pigments such as chlorophylls and carotenoids play importance role as key pigments, which capture radiant of energy from the Sun in the process called photosynthesis – a process that convert solar energy into fuels. In agriculture, the natural pigments are important photosensors and indicators for health status. There are many applications that have been revealed through the study of structure and function of natural pigments. We are looking forward of your active participation during the Natural Pigment Conference for South-East Asia to present your works, to raise questions, and triggers discussion on the recent research and development of pigment-based innovation and technology. We are inviting high profile scientists and practitioner in the industry as the keynote and plenary speakers. We wish that their presence would be a great encouragement and motivation for students and young researchers in the South-East Asia to take part in the research and development of natural pigments. We are very happy to have 125 participants including the keynote speaker, plenary speakers, invited speakers, poster speakers, students and other participants from Germany, Switzerland, France, US, the Philippines, Singapore, and Indonesia. In this event, we would like to extend our acknowledgement to our partners, who support us financially, i.e. Kemenristekdikti, DAAD, ITS Scientific as well as PT Ditek Jaya and Shimadzu (Asia Pacific) Pte Ltd. We thanks to the Indonesian Society Pigment Researchers (Himpunan Peneliti Pigmen Indonesia, HP2I) for cooperation as steering committee, the Indonesia Pharmacist Association (Ikatan Apoteker Indonesia, IAI) for certifying this event with 6 credit points, the Indonesian Chemical Society (Himpunan Kimia Indonesia, HKI) and Indonesian-German Network (IGN) for disseminating this event to their members. We thanks also to Universitas Ma Chung for having this venue with superb facilities and supports from the staffs. I do hope that you will-find your time here enjoyable and a source of many insights that will help to advance the understanding of natural pigments and to encourage the collaborations and friendship, scientific exchange, the development of joint interests and project that are of scientific and economic importance in order to exploit the natural pigments and their importance in the most aspect of living, e.g. food and health, fashion, agriculture and advanced technologies. Thank you very much and please enjoy this event. Yours sincerely, Tatas H.P. Brotosudarmo, Dipl.Chem., Ph.D Chair of the NP-SEA 2016 Sage 2 ### Opening Remark from The Rector of Universitas Ma Chung Dear Friends, participants of the Natural Pigments Conference for South East Asia 2016. Welcome to Universitas Ma Chung, welcome to Malang, a beautiful city in Indonesia. We are happy that natural pigments experts from several countries, Indonesia, German, Switzerland, USA, France, the Philippines and Singapore gathered together here to share their knowledge and research results. We hold the NP Conference South East Asia this year in Universitas Ma Chung, Malang. It is not by chance that the international conference is holding here, because Universitas Ma Chung has an expertise in Natural Pigments which is institutionally embodied as Ma Chung Research Center for Photosynthetic Pigments (MRCPP). MRCPP is not only supported by Universitas Ma Chung but also by Indonesian government by recognizing MRCPP as one of the national scientific center of excellence. Indonesia is one of the countries with a rich biodiversity, and consequently rich of natural pigments source. However, natural pigments industry in Indonesia and South East Asia is still lag behind the developed countries, whereas it is expected that the demands of natural pigments in various industries will increasing in the future. Therefore the research on natural pigments is one of the important research field. Indonesian government is also promoting the dissemination of research results to be applied in industry, not only finish in scientific publication. Many kind of natural pigments in Indonesia and their properties are still unknown, they are remains to be investigated to provide benefit for human welfare. The international research cooperation in natural pigments will accelerate the rate of discovery and innovation in applying the knowledge for human welfare. Therefore, this conference is an important conference not only for the pigments research society but also for other research field and industry. Besides the conference I hope the participants can also enjoy the natural beauty of Malang and its historic heritage. I hope you enjoy staying in Malang, obtain a great benefit from the conference, and develop cooperation framework with other conference participants. I wish to thank the speakers, poster presenters, students, and other attenders for attending the conference also partners who supported the conference. Malang, August 18, 2016 Rector of Universitas Ma Chung Sage 3 PSEA # 3 RD NATURAL PIGMENTS CONFERENCE FOR SOUTH-EAST ASIA # CONTENTS Раде | Preface | 1 | |--|-----| | Opening Remark from The Chairman of The 3th-NPSEA | 2 | | Opening Remark from The Rector of Universitas Ma Chung | 3 | | Content | 5 | | Organizing Committee | 7 | | Scientific Program | 11 | | General Schedule | 12 | | Schedule of Oral Presentation | 14 | | Schedule of Poster Presentation | 16 | | Extended Abstracts of Keynote & Plenary Speaker | 19 | | Extended Abstracts of Oral Presentation | 29 | | Extended Abstracts of Poster Presentation | 75 | | List of Workshop Participants | 131 | # 3 NATURAL PIGMENTS CONFERENCE FOR SOUTH-EAST ASIA #### International Scientific Committee - 1. Ferry F. Karwur, Ph.D. (Satya Wacana Christian University, Indonesia) - 2. Prof. Dr. Hideki Hashimoto (Kwansei Gakuin University, Japan) - 3. Prof. Dr. Hugo Scheer (Ludwig Maximilians University, Germany) - 4. Leenawaty Limantara, M.Sc., Ph.D. (Universitas Pembangunan Jaya, Indonesia) - 5. Prof. Dr. Ocky Karna Radjasa (Diponegoro University, Indonesia) - 6. Tatas H.P. Brotosudarmo, Dipl.Chem., Ph.D. (Universitas Ma Chung, Indonesia) - 7. Prof. Dr. Yuzo Shioi (Universitas Ma Chung, Indonesia) #### Organizing Committe 1. Chairman : Tatas H. P. Brotosudarmo, Ph.D. 2. Secretary : Selvia Septa Rani : Katarina Purnomo Salim, S.Gz., M.P. : S. Alfisyah Nur Aziza, S.Si. 3. Treasurer : Rosita Dwi Chandra, S.TP., M.FoodSt(Adv) : Amelia Myristi Lolita, A.Md. 4. Public relation : Tatas H. P. Brotosudarmo, Ph.D. : Dr. Yuyun Yuniati, S.T., M.T. 5. Program : Tatas H. P. Brotosudarmo, Ph.D. : Monika N. U. Prihastyanti, M.Nat.Sc. : Novie Maria Setiawati, S.IP. 6. Scientific program and poster : Heriyanto, S.Si., M.Si., M.Sc. : Dion Notaria, S.Farm., M.Sc., Apt. : Rehmadanta Sitepu, S.Farm., M.Si., Apt. 7. Accommodation, equipment, and transportation : Teddy Martono Jeremia, S.E. : Marcelinus Alfasisurya Setya Adhiwibawa, S.P. : Gigih Devy Rosalinda, S.IP. The 3rd Natural Pigment Conference for South-East Asia (NP-SEA) Secretariat Office Ma Chung Research Center for Photosynthetic Pigments (MRCPP) Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151 East Java, INDONESIA Tel./Fax +62 341 550 171/175, E-mail: mrcpp@machung.ac.id 8. Documentation and publication : Marcelinus Alfasisurya Setya Adhiwibawa, S.P. : Evan Hutomo Eka Putra, S.Kom. : Dwi Endra Krisna 9. Food and beverages : Renny Indrawati, S.TP., M.Nat.Sc. : Dr. Yuyun Yuniati, S.T., M.T. 10. Usher : Zuri Rismiarti, S.Si., M.Si. : Martanty Aditya, M.Farm-Klin., Apt 11. Proofreader : Prof. Dr. Yuzo Shioi : Prof. Eugenius Sadtono, Ph.D. # GENERAL SCHEDULE THE 3rd NATURAL PIGMENTS CONFERENCE FOR SOUTH-EAST ASIA (NP-SEA) 2016 August 22, R&D Center Universitas Ma Chung | | Monday, August 22, 2014 The 3rd Natural Pigments Conference for South-East Asia (NP-SEA) 2016 | | | |---------------|---|--|--| | "T | | | | | Time | * Program | Room | | | 07:00 - 08:00 | Registration | R&D Center
1 st floor | | | 08:00 - 08:10 | Opening Remark by Conference Chairman by Tatas H. P. Brotosudarmo, Ph.D. | R&D Center
Hall 6 th floor | | | 08:10 - 08:45 | Keynote Speaker: [Chlorophylls: From Photosynthesis to Photodynamic Therapy] by Prof. Dr. Hugo Scheer (Moderator: Leenawaty Limantara, Ph.D.) | R&D Center
Hall 6 th floor | | | 08:45 – 09:10 | Plenary Speaker: [Chlorophyll Breakdown During Leaf Senescence: A Novel Role for TIC55 as a Hydroxylase of Phyllobilins, the Products of Chlorophyll Breakdown] by Prof. Stefan Hörtensteiner (Moderator: Leenawaty Limantara, Ph.D.) | R&D Center
Hall 6 th floor | | | 09:10 - 09:35 | Plenary Speaker: [The Untapped Richness of Pigment-producing Marine Organisms and Their Associants] by Prof. Ocky Karna Radjasa (Moderator: Leenawaty Limantara, Ph.D.) | R&D Center
Hall 6 th floor | | | 09:35 – 10:00 | Plenary Speaker: [Marine Fungal Pigments Diversity and Potential Use] by Dr. Kustiariyah Tarman (Moderator: Leenawaty Limantara, Ph.D.) | R&D Center
Hall 6 th floor | | | 10:00 - 10:15 | Coffee break | R&D Center
Hall 4 th floor | | | 10:15 – 10:50 | Keynote Speaker: [Potential Market of Pigments in Daily Life: Food, Health and Fashion in Indonesia] by Ir. Thomas Darmawan (Moderator: Ferry F. Karwur, Ph.D.) | R&D Center
Hall 6 th floor | | | 10:50 - 11:15 | Plenary Speaker: [Review on the Metabolites of Monascus] by Dr. Philippe J. Blanc (Moderator: Ferry F. Karwur, Ph.D.) | R&D Center
Hall 6 th floor | | | 11:15 – 11:40 | Plenary Speaker: [Nexera UC, New Concept On-pine SFE-SFC-MS: Principles and Applications of SFE-SFC-MS/MS] by Dr. Xing Jie (Moderator: Ferry F. Karwur, Ph.D.) | R&D Center
Hall 6 th floor | | | 11:40 – 12:05 | Plenary Speaker: by Prof. Sherry A. Tanumihardjo, Ph.D. (Moderator: Ferry F. Karwur, Ph.D.) | R&D Center
Hall 6 th floor | | | 12:05 - 13:30 | Lunch | R&D Center
Hall 4 th floor | | ,age 12 ### 3RD NATURAL PIGMENTS CONFERENCE FOR SOUTH-EAST ASIA | Time | Program | Room | |---------------|--|---| | 13:30 – 14:45 | Invited angelog Consign 1 | R&D Center
6 th floor (Class A) | | 13:30 – 14:43 | Invited speaker – Session 1 | R&D Center
6 th floor (Class B | | 14:45 – 15:45 | Coffee Break Poster Session | R&D Center
Hall 4 th floor | | 15:45 – 16:45 | Luited and long Continue | R&D Center
6 th floor (Class A) | | 15:45 – 16:45 | Invited speaker – Session 2 | R&D Center
6 th floor (Class B | | 16:45 – 17:15 | 3 rd NP-SEA Awards for Best Poster and Closing Remark | R&D Center
Hall 6 th floor | | 17:15 – 18:00 | Preparation for Gala dinner | | | 18:00 – 20:00 | Gala dinner | Balai Pertiwi | | | Tuesday, August 23, 2014 | | | | dvance Liquid Chromatography Mass Spectrometry (LCMS/MS
s Workshop in Junction with The Natural Pigments Conference f | | | Time | Program | Room | | 07:00 - 8:00 | Registration | | | 08:00 - 09:00 | Session 1 : Introduction of LCMS/MS and Application | | | 09:00 - 12:00 | Session 2 : Technical Workshop (I) | MRCPP | | 12:00 - 13:00 | Lunch | R&D Center
Hall 3rd floor | | 13:00 – 16:00 | Session 3 : Technical Workshop (II) | | | 16:00 - 16:15 | Clossing | | # 3 NATURAL PIGMENTS CONFERENCE FOR SOUTH-EAST ASIA #### Schedule of Oral Presentation | | Oral Pre | sentation – Session 1 | | | |-------------|---|--|-------|--| | | | oor of The R&D Center (Class A)
r. Edia Rahayuningsih, M.S. | | | | Time | Authors | Title | Code | | | 13:30-13:45 | Delianis Pringgenies, Riyanda
Idris, Muhammad Zainudin | The Antioxidant Activity of Carotenoid Pigments in the Bacterial Symbionts of Seagrass Syringodium isoetifolium | ON-01 | | | 13:45-14:00 | Victor Aprilyanto, Andrea
Putri Subroto, Chris
Darmawan, Reno Tryono,
Condro Utomo, and Tony
Liwang | In Vitro Selection of single guide RNA for
Effective Cleavage of Exon-3 VIRESCENS
Gene in Oil Palm Using CRISPR/Cas9
System | ON-02 | | | 14:00-14:15 | Abdullah Muzi Marpaung,
Nuri Andarwulan, Purwiyatno
Hariyadi and Didah Nur
Faridah | The Color Stability of Butterfly Pea (<i>Clitoria ternatea</i> L.) Petal Extract at pH 6 to 8 are Highly Uncertain | ON-03 | | | 14:15-14:30 | Mohammad Junus | Algae Cells Density in Various Planting
Period and Liquid Sludge Biogas Unit
Proportion | ON-04 | | | 14:30-14:45 | Uun Yanuhar | The Involvement Fragment Pigment Protein (FPP) Microalga Nanochloropsis oculata of Response Heat Shock Protein 70 (HSP70) of Infection Nervous Necrotic Viral (NNV) on Grouper | ON-05 | | | | | of The R&D Center (Class B)
Prof. Erlinda A. Vasquez | | | | 13:30-13:45 | Windu Merdekawati | The Uniqueness of Seaweed Pigments | ON-06 | | | 13:45-14:00 | Ermiziar, T., Saragih, R.,
Hanum, L. | Natural Pigment from Red Colour Melinjo
Peels | ON-07 | | | | | Theaflavin, Natural Pigment on Black Tea and Its Pharmacological Activities | ON-08 | | | 14:15-14:30 | Failisnur, Sofyan and Anwar
Kasim | n and Anwar Dyeing of Cotton Fabric with Natural Dye from Gambier (<i>Uncaria gambir</i> Roxb.) | | | | 14:30-14:45 | Defri Yona and Park Mi Ok | Seasonal variation of phycoerythrin | | | | | | sentation – Session 2 | Section 1 | |-------------|--|--|-----------| | | | oor of The R&D Center (Class A) | | | | Darda * Efendi, H. | Mr. Victor Aprilyanto | | | 15:45-16:00 | Muthmainnah, T.S.
Arzam, I. H. Sumiasih,
R. Poerwanto, and Y.A.
Purwanto, A. Agusta, and
S. Yuliarni | Degradation of Chlorophyll and formation of β-cryptoxanthin and β-citraurin in Citrus Degreening | ON-11 | | 16:00-16:15 | Edia Rahayuningsih | The Sustainable Economic Development through Research, Production, and Application of Natural Dye | ON-12 | | 16:15-16:30 | Delicia Yunita Rahman,
Dwi Susilaningsih and
Marc J.E.C. van der
Maarel | Heterotrophic growth of LIPI13-AD014 for Phycocyanin Production | ON-13 | | 16:30-16:45 | Muh. Thoyib, Catur
Harsito, Suyitno, Syamsul
Hadi | Simple Procedure for Reducing
Cratering Defect of Water-Based Paint
Using Caesalpinia Sappan Dye | ON-14 | | | | of The R&D Center (Class B)
: Dr. Dadan Rohdiana | | | 15:45-16:00 | Anna Yuliana, Marlia
Singgih Wibowo, Elin
Julianti | Toxicity Level of Monascus Pigments Using Ecosar Program | ON-15 | | 16:00-16:15 | Erlinda A. Vasquez, Candelario L. Calibo, Ronnel M. Godoy and Lady Fatima G. Palermo | Alteration of the Chlorophyll Content in
Phytoplasma-Infected Cassava | ON-16 | | 16:15-16:30 | Rika Wahyuningtyas &
Uun Yanuhar | The Expression of MHC Class 1 in
Cyprinus carpio Infected Koi Herpes
Virus through Induction of Crude
Protein from Macroalgae Halimeda sp | ON-17 | | 16:30-16:45 | Mada Triandala Sibero,
Kustiariyah Tarman, Rita
Sahara | Exploration of Red Pigment from
Coastal Endophyte Fungi Isolated from
Hydnophytum formicarum | ON-18 | | | | Poster Presentation | | |----|---|--|-------| | | Room at | t 4 th floor of The R&D Center
14:45 – 15:45 | | | No | Authors | Title | Code | | 1 | Elfi Anis Saati, Sita Ayu
Pangesti, Sri Winarsih and
Moch. Wachid | Co-pigmentation Anthocyanins of Rose Pigment
(varieties of Batu Local) with Catechin from
Black Tea and Green Tea Extracts | PN-01 | | 2 | Andreas Lucky Effendy,
Rollando | In silico screening study of potent human breast cancer drug from natural pigments | PN-02 | | 3 | Antonius Herry Cahyana, Kam
Natania and Hong Fu Sheng | Study on Antioxidant Activity, Binding Capacity and Stability of Curcumin-Functionalized Fe ₃ O ₄ Magnetic Nanoparticles | PN-03 | | 4 | Ayda Krisnawati and M.
Muchlish Adie | Consistency of Biomass Production from
Several Soybean Genotypes in Various Agro
Ecology of Indonesia | PN-04 | | 5 | Diah Mustika Lukitasari,
Rosita Dwi Chandra,
Heriyanto, Renny Indrawati | Stability and Antioxidant Activity of Microencapsulated Pigment from Red Spinach (Amaranthus tricolor) for Food Colourants | PN-05 | | 6 | Elin Julianti, Laida Neti
Mulyani,Marlia Singgih
Wibowo, Susanti | Comparison Different Extraction method of C-Phycocianin, a Phycobiliprotein from Dry Biomass of Spirullina platensis | PN-06 | | 7 | Ervika Rahayu NH, Dini
Ariani, Miftakhussolikhah,
Maharani P.E., Yudi P | The Effect of Yellow Natural Color from Turmeric on Physical and Sensory Properties of Arenga Starch-Colocasia Esculanta L. Noodle | PN-07 | | 8 | Giacinta Mutiara Beta
Maharani, Filiana Santoso, and
Abdullah Muzi Marpaung | Stability Improvement of Anthocyanin from
Various Local Plants using Metal Complexation | PN-08 | | 9 | Kam Natania, Antonius Herry
Cahyana, Melanie Cornelia
dan Edison Sutiyono | Microencapsulation of Soursop (Annona muricata Linn.) Leaf Tea Extract Using Natural Mucilages | PN-09 | Page 16 ### 3RD NATURAL PIGMENTS CONFERENCE FOR SOUTH-EAST ASIA | | | Poster Presentation | | | | |----|--|---|-------|--|--| | | Room at 4 th floor of The R&D Center
14:45 – 15:45 | | | | | | No | Authors | Title | Code | | | | 10 | M. Muchlish Adie and Ayda
Krisnawati | Identification and Clustering Soybean
Genotypes with High Biomass Production as a
Source of Renewable Energy | PN-10 | | | | 11 | Melanie Cornelia and
Oktafielia Putri | Application of Goji Berry Fruit (<i>Lycium barbarum</i> L.) extract as Food colorant in Dried Noodle | PN-11 | | | | 12 | Miftakhussolikhah, Dini
Ariani, Ervika RNH, Azkia
Nastiti, Yudi Pranoto | Effect of Additional Suji Leaves and Turmeric Extract on Physicochemical Characteristic and Antioxidant Activity of Arenga-Canna Noodle | PN-12 | | | | 13 | Selfina Gala, Dhaniar Rulandri
Widoretno, Delita
Kunhermanti, Lailatul
Qadariyah, Sumarno and
Mahfud | Microwave-assisted Extraction of Natural Dyes from Jackfruit Wood Waste (Artocarpus heterophyllus Lamk) | PN-13 | | | | 14 | Renny Indrawati, Gita,
Kristinę, Melissa, Yuyun
Yuniati, Leenawaty Limantara | How extensive does the artificial dye color our food? | PN-14 | | | | 15 | Swanty Rahmazania Mustika
and Abdullah Muzi Marpaung
M.P | Color properties and Stabilizing Effect of Metal ion on Blue Anthocyanin Color from Buni (Antidesma bunius) Fruit | PN-15 | | | | 16 | Rosita Dwi Chandra, Renny
Indrawati, Mario Sent
Anugrah, Jodiawan, Ricky
Santoso, Tatas H. P.
Brotosudarmo, Leenawaty
Limantara | Uncovering the Availability of Products
Enriched with Vitamin A in Local Supermarket | PN-16 | | | | | Room at | Poster Presentation
t 4th floor of The R&D Center | | | |---------------|--|--|-------|--| | 14:45 – 15:45 | | | | | | No | Authors | Title | Code | | | 17 | Yudi Purnomo, Fajar Audra
Pratama, Nur Rohman | Hepatoprotector and Anti-Hemolysis Activity of Tommato (<i>Lycopersicon pimpinellifolium</i>) Juices In Rats Induced Alum | PN-17 | | | 18 | Endang Kusdiyantini, Iffan
Alif, Salma Fuadiyah, Dyah
Wulandari, Anto Budiharjo | Identification of Red-Pigmented Thermophile
Bacteria Isolated from Gedong Songo Hot
Spring, Semarang – Central Jawa | PN-18 | | | 19 | Setiyono, E., Pringgenies.,
Heriyanto, Prihastyanti,
M.N.U, Shioi, Y.,
Brotosudarmo, T.H.P | Carotenoid Analysis from Erythrobacter flavus
Symbiont of Acropora nasuta | PN-19 | | | 20 | Husnatain, I.D., Salim, K.P.,
Heriyanto, Purwantiningrum,
I., Harijono, Limantara, L. | Effect of Dried Fruit Processing on Lycopene
Content and Pigment Composition of Tommato
(Lycopensicum esculentum var Marta) | PN-20 | | | 21 | Wibowo, A.A., Elim, P.E.,
Heriyanto, Prihastyanti,
M.N.U, Shioi, Y.,
Brotosudarmo, T.H.P | Effect of Drying Treatments on the Concentration of Fucoxanthin and Chlorophyll a and Pigment composition of Three Sargassum Species | PN-21 | | | 22 | Yuyun Yuniati, Renny
Indrawati, Jovine, Tantiana,
Wynona | Tracing the antioxidant-rich products in local groceries: naturalness, biofunctionality, and price | PN-22 | | | 23 | Yuyun Yuniati, Juliana,
Lidwina Angelica Soetantijo,
and Ratna Yulianti Wijaya,
Renny Indrawati | Preparation of Antioxidant Drinks from Mulberry Morus nigra L. | PN-23 | | Page 18 PN-21 # Effect of Drying Treatments on the Composition and Concentration of Fucoxanthin and Chlorophyll a of Three Sargassum Species Wibowo, A. A. a, Elim, E. P. a, Heriyanto a, b, Prihastyanti, U. N. Mb, Shioi, Y. b, Limantara, L. a, b, c Brotosudarmo, T. H. P. a, b* - ^a Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Jl. Villa Puncak Tidar N-01, Malang 65151, East Java, Indonesia - ^b Ma Chung Research Center for Photosynthetic Pigments (MRCPP), Universitas Ma Chung, Jl. Villa Puncak Tidar N-01, Malang 65151, East Java, Indonesia - ^eUniversitas Pembangunan Jaya, Jl. Cendrawasih Raya B7/P, South Tangerang-15413, Banten Indonesia #### Abstract Sargassum sp. is well known as a source of hydrocolloid and pigments. In the present preliminary study, the effect of two different drying treatments (oven and sun drying) on the pigments was evaluated and compared to the fresh one. Pigments composition from three species of Sargassum sp. collected from Teluk Awur beach was investigated using spectroscopic and chromatographic methods. The experimental results showed that concentration of fucoxanthin (fucox) and chlorophyll a (chla) from the three species of Sargassum sp. (fresh and dried) were varied from 0.51 mg \cdot g⁻¹ to 0.94 mg \cdot g⁻¹ and from 0.47 mg \cdot g⁻¹ to 2.68 mg \cdot g⁻¹ dry weight (dw), respectively estimated by HPLC method. Oven was the best drying treatment to maintain the fucox while the sun drying was the best drying treatment to maintain chla. Keywords: Sargassum sp., fucoxanthin, chlorophyll a, drying treatments, pigments *Corresponding author: E-mail Address: tatas.brotosudarmo@machung.ac.id Telephone Number: 082141490052 #### 1. Introduction Brown seaweed is one of the edible seaweeds and has been widely used as the major commercial source of agar, alginate, and carrageenan. Besides hydrocolloid source, recently, brown seaweed has been reported for its industrial importance of potential pigments. Sargassum sp. is one of the edible brown seaweed and abundant in Indonesia. In fact, Sargassum sp. contains high amount of fucoxanthin (fucox) and chlorophyll a (chla) [2]. Fucox is typical pigment component of Sargassum sp. that gives several health benefits to humans. Fucox act as anti-cancer and antiobesity [3,4]. Many reports have been published for *Sargassum* sp. on its biochemical compounds, such as pigments and fatty acid. The growth depends on several environmental factors, such as light intensity, temperature, and nutrient levels [5]. To use *Sargassum* sp., either in fresh or dry conditions, as a raw material in pigment industry, pigment analysis is required to evaluate the effect of drying treatments on the pigment quality. In this study, we analyzed the pigment composition of the seaweed in the form of fresh seaweed and dry powders and determined the best drying treatment. #### 2. Material and Methods #### 2.1. Sample Preparation Three Sargassum sp. were collected from several locations in Teluk Awur beach, Jepara, Central Java, Indonesia. The seaweeds were cleaned from any associated debris by rinsing with fresh water and then samples were put into black plastic bags and placed in cooling box during the transportation to the laboratory. Seaweeds were dried using two different treatments, *i.e.* oven (50 °C, 30 h) and sun drying (30 °C, 36 h). #### 2.2. Extraction of Pigments Initially fresh Sargassum sp. thali were frozen with liquid N₂ and followed by grinding into small particles. The pigment extraction was carried out homogenizing 0.5 g of the sample and ethanol (EtOH) in vortex, and followed by sonication to break the seaweed cells. The crude pigment extract was separated from its residue by centrifugation. The residue was continuously extracted with the same procedure until pigments were completely extracted. The crude extract was dried with the flow of N₂ gas. In the case of dry Sargassum sp thali powders, pretreatment by humidification was made before the pigment extraction according to the modified method of Ishihara et al. [6] Pigment from dry powder (0.1 g) was extracted with the same methods as fresh sample. #### 2.3. Pigment Determination Absorption spectra of crude pigment extract in acetone were recorded by a UV-1700 spectrophotometer (Shimadzu) in the range of 300 nm to 800 nm. Chromatographic analysis was performed by RP-HPLC equipped with photodiode array detector (Shimadzu). A Shim-pack VP-ODS C18 column (250L × 4.6 mm; Shimadzu) was used for pigments separation according to the method of Hegazi *et al.* [7]. Chromatographic and spectroscopic properties of the The 3rd Natural Pigment Conference for South-East Asia (NP-SEA) Secretariat Office Ma Chung Research Center for Photosynthetic Pigments (MRCPP) Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151 East Java, INDONESIA Tel./Fax +62 341 550 171/175, E-mail: mrcpp@machung.ac.id PN-21 separated pigments were used for the identification. The modified standard curve of pigments from the linear equeations was used for calculationg concentration of fucox and chl a in mg $\,$ g⁻¹ dry weight (dw) [2]. #### 3. Results and discussion Absorption spectra of pigment extract from fresh Sargassum sp. species 1 showed typical absorptions of carotenoids around 400 nm to 500 nm and also chla at 431 nm and 662 nm which is partially overlapped with band of carotenoids (Fig. 1a). Absorption spectra of other fresh seaweed show similar pattern. On other hand, spectral shift from 431 nm to 412 nm was observed in dried seaweed. For the drying methods using oven showed that most of the chla degraded into pheophytin. Moreover, absorption spectra of sun-dried seaweed show that the soret has two peaks in 431 nm and 412 nm suggesting initial pheophytin formation. A decrease in absorbance was observed in Qy band of chl a due to the influence of drying process (Fig. 1a). Fig. 1. (a). Absorption spectra of fresh seaweed (black), oven-dried seaweed (dark gray), and sun-dried seaweed (light gray). (b) Chromatogram of fresh (black) and dried seaweed (dark gray) HPLC chromatogram of pigment extract from fresh and dried Sargassum sp. are shown in Fig. 1b. At least three main pigments were detected in fresh seaweed. On the other hand, at least four main pigments were detected in oven-dried seaweed. Morevoer, there is a slight difference on fucox intensity which appeared at t_R 9.3 min between fresh and oven-dried seaweed. On the contrary, significant decrease was observed on chl a peak (t_R 37.1 min) because most of chla degraded into phaeophytin. In Fig. 1b., phaeophytin is shown at t_R 53.9 min. In addition, β -carotenoid was found in t_R 58.2 min. All pigment extract had similar chromatogram profile. The dominant pigment in fresh *Sargassum* sp. were fucox and chla. The concentration of fucox varied from 0.71 mg g⁻¹ to 0.87 mg g⁻¹. On other hand, chla varied from 1.91 mg g⁻¹ to 2.68 mg g⁻¹. From three species *Sargassum* sp. (1) has the highest concentration of fucox and chla. As the result of drying treatments, fucox and chla concentrations decreased (Table 1). The degradation percentage of fucox with oven drying treatment varied from 12.64 % to 29.88%, thus oven drying is recommended as the best drying method that still can maintain fucox. Meanwhile, sun drying treatment gave larger degradation percentage of fucox, *i.e.* 36.78 % to 41.38 %. The properties of carotenoids as photoprotector enable fucox to minimize degradation on chla due to high intensity of light during sun drying treatment, therefore fucox concentration decreased. However, oven-dried seaweed still had stable fucox under high temperature exposure. On the other hand, chla is more stable in low temperature although it was exposed under high intensity light from the sun. The decrease percentage of chla from oven-dried seaweed varied from 58.58 % to 75.39 %, while the degradation percentage in sun-dried seaweed varied from 31.93 % to 56.90 %. Table 1. Spectrophotometric and chromatographic of the chl a, total carotenoid, and fucox from Sargassum | Species of | Treatment | Concentration (mg | | on (mg · g ^{-l}) | |-------------|------------|-------------------|------|----------------------------| | Sargassum | | | | Fucox | | C | Fresh | | 2.68 | 0.87 | | Sargassum . | Oven | | 1.11 | 0.76 | | sp. (1) | Sun drying | | 1.28 | 0.55 | | C | Fresh | | 2.39 | 0.87 | | Sargassum | Oven | | 0.68 | 0.61 | | sp. (2) | Sun drying | | 1.03 | 0.51 | | Caugassum | Fresh | | 1.91 | 0.71 | | Sargassum | Oven | | 0.47 | 0.94 | | sp. (3) | Sun drying | | 1.30 | 0.61 | #### 4. Conclusion The dominant pigments for fresh *Sargassum* sp. were fucox and chla. *Sargassum* sp. (1) has the highest concentration of fucox (0.87 mg g⁻¹) and chla (2.68 mg g⁻¹). The best drying treatment to maintain the concentration or quality of fucox is oven drying with decrease percentage varied from 12.64% to 29.88%. In other hand the best drying treatment to maintain the concentration of chla is sun drying with degradation percentage varied from 31.93% to 56.90%. #### References - [2] Heriyanto, Juliadiningtyas, A. D., Shioi, Y., Limantara, L., Brotosudarmo, T. H. P.(2016). Analysis of Pigment Composition of Brown Seaweeds Collected from Panjang Island, Central Java, Indonesia. Pertanika J. Trop. Agri. Sci: inpress [3] Hosokawa, M., Kudo, M., Maeda, H., Kohno, H., Tanaka, T. & - [3] Hosokawa, M., Kudo, M., Maeda, H., Kohno, H., Tanaka, T. & Miyashita, K. (2004). Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARgamma ligand, troglitazone, on colon cancer cells. *Biochim. Biophys. Acta* 1675:113-9. - [4] Maeda, H., Hosokawa, M., Sashima, T., Funayama, K. & Miyashita, K.(2005). Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect throught UGP1 expression in white adipose tissues. *Biochem. Biophys. Res. Commun.* 332:392-7. - [5] Baghel, R., S., Kumari, P., Reddy, C., R., K., & Jha, B.(2014). Growth, pigments, and biochemical composition of marine red alga *Gracilaria Crassa*. J. Appl. Phycol. vol. 26, p. 2143-2150. - [6] Ishihara, K., Oyamada, C., Sato, Y., Danno, H., & Kimiya, T.(2008).Relationships between quality parameters and content of glycerol galactoside and porphyra-334 in dried laver nori *Porphyra* yezoensis. Fish. Sci., vol. 74, p. 167-173. - [7] Hegazi, M. M., Ruzafa, A. P., Almela, L., & Candela, M. E.(1998). Separation and identification of chlorophylls and carotenoids from Caulerpa prolifera, Jania rubens and Padina Pavonica by reversed phase high-performance liquid chromatography. Journal of Chromatography, A 829, 153-159. ³age 125