Organic & Supramolecular Chemistry

The Role of a Nitro Substituent in C-Phenylcalix[4] resorcinarenes to Enhance the Adsorption of Gold(III) lons

Krisfian Tata Aneka Priyangga,^[a] Yehezkiel Steven Kurniawan,^[a] and Leny Yuliati*^[a, b]

Nitro-substituted *C*-phenylcalix[4]resorcinarene derivatives were synthesized and evaluated for gold(III) ions adsorption. All the nitro-substituted *C*-phenylcalix[4]resorcinarenes showed higher maximum adsorption capacity as compared to the bare *C*-phenylcalix[4]resorcinarene. A remarkable high adsorption capacity of up to 272.70 mg g⁻¹ was obtained after 2 h on the *C*-2-nitrophenylcalix[4]resorcinarene (Calix-2NO₂), which was two times higher than that of the *C*-phenylcalix[4] resorcinarene. The adsorption capacity was affected by the position of the nitro group. The highest adsorption capacity

Introduction

Gold is one of the precious metals which is greatly used in jewelry, electronics, smart material, and advanced technologies^[1,2] owing to its unique physicochemical properties as compared to other precious metals.^[3] The consequence of the excessive usage of gold making its source is kept depleting by days.^[4,5] Commonly found as gold(III) ions, its recovery from urban mine may act as an untapped resource in the future.^[6,7] Conventional methods for gold(III) ions recovery are adsorption, solvent extraction, chemical precipitation, and membrane filtration.^[8–11] Among these methods, the adsorption method is attractive as it is cheap, simple, and could be performed in the absence of toxic organic solvents.^[12]

Many adsorbents for gold(III) ions have been developed such as activated carbon,^[13] polyethyleneimine,^[14] montmorillonite,^[15] and hybrid biosorbent.^[16] Activated carbon, unfortunately, only gave 9.95 mg g⁻¹ as its maximum adsorption capacity (*qm*) after a very long equilibrium time of 24 h.^[13] On the other hand, the polyethyleneimine gave a higher *qm* value of 286 mg g⁻¹ after 6 h-shaking,^[14] which is still a time-consuming process. Even though the montmorillonite composite material gave a faster equilibrium time of 1.5 h, the poor *qm* value of 1.49 mg g^{-1[15]} made this material far from the

[a]	K. T. A. Priyangga, Y. S. Kurniawan, Dr. L. Yuliati
	Ma Chung Research Center for Photosynthetic Pigments
	Universitas Ma Chung
	Villa Puncak Tidar N-01, Malang 65151, East Java, Indonesia
	E-mail: leny.yuliati@machung.ac.id
[b]	Dr. L. Yuliati
	Department of Chemistry, Faculty of Science and Technology
	Universitas Ma Chung
	Villa Puncak Tidar N-01, Malang 65151, East Java, Indonesia
	Supporting information for this article is available on the WWW under
	https://doi.org/10.1002/slct.202101067

observed on the Calix-2NO₂ was closely related to the strongest supramolecular interactions between the gold(III) ions and the Calix-2NO₂, as supported by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (¹H-NMR) spectros-copies as well as the desorption study. This study demonstrated that the macrocyclic material, namely nitro-substituted *C*-phenylcalix[4]resorcinarenes, were effective adsorbents having good reusability, and thus, applicable for gold(III) ions recovery.

Chemistry Europe

European Chemical Societies Publishing

application. On the other hand, a biosorbent material containing tannin acid immobilized dialdehyde corn starch was reported to give a high qm value of 298.50 mg g⁻¹, but the equilibrium time was still quite long, which was 6 h.^[16] Employing adsorbent materials having high adsorption capacity and short equilibrium time would be a great benefit and this leaves a great challenge for the researchers.

Macrocyclic organic compounds have been known for their outstanding adsorption capability due to their strong hostguest interactions.^[17,18] Particular attention is on calix[n] resorcinarenes that can be prepared from a one-pot reaction between resorcinol and aldehyde compounds in acidic conditions.^[19,20] The calix[4]resorcinarene derivatives have good physical properties such as high chemical stability, high thermal stability, poor solubility in aqueous media, and relatively low toxicity.^[21,22] All these good properties make them suitable candidates for metal ion adsorption. C-phenylcalix[4] resorcinarene is considered as a simple calix[4]resorcinarene derivative having eight benzene rings and eight hydroxyl groups exhibiting good capability for heavy metal adsorption. $^{\ensuremath{\scriptscriptstyle [21,23,24]}}$ The hydroxyl groups and the aromatic rings provide binding sites for both hard and soft acids such as lead(II) and chromium(III) ions.^[19] However, to the best of our knowledge, the application of calix[4]resorcinarene for gold(III) ions adsorption has not been yet reported.

Since the addition of heteroatom substituents such as -N and -O groups^[25] may enhance the adsorption capacity of calix [4]resorcinarene toward gold(III) ions, three compounds of nitro-substituted *C*-phenylcalix[4]resorcinarene derivatives, *i.e. C*-2-nitrophenylcalix[4]resorcinarene (Calix-2NO₂), *C*-3-nitrophenylcalix[4]resorcinarene (Calix-3NO₂), and *C*-4-nitrophenylcalix [4]resorcinarene (Calix-4NO₂) were synthesized from resorcinol and nitrobenzaldehyde. The maximum adsorption capacity towards gold(III) ions, as well as the adsorption kinetics and thermodynamics, were investigated. The importance of nitro

Scheme 1. Synthesis of C-phenylcalix[4]resorcinarene derivatives.

group and its position to enhance the supramolecular interactions with gold(III) ions were revealed by desorption study and elucidated by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (¹H-NMR) spectroscopies. The reusability test was also performed on the Calix-2NO₂ adsorbent.

Results and Discussion

Synthesis and Characterizations

The *C*-phenylcalix[4]resorcinarene derivatives were synthesized from resorcinol and benzaldehyde or nitrobenzaldehyde compounds as starting materials. Under the acidic condition, both starting materials were reacted to form a cyclic structure of *C*-phenylcalix[4]resorcinarene as shown in Scheme 1. The *C*-phenylcalix[4]resorcinarene derivatives, *i.e.* Calix-2NO₂, Calix-3NO₂, Calix-4NO₂, and Calix-H were obtained in 93.5, 39.6, 48.5, and 95.5 % yield, respectively.

The successful synthesis of all C-phenylcalix[4]resorcinarene derivatives was supported by their FTIR, ¹H-NMR, ¹³C-NMR, and LC-HRMS spectra. As depicted in Figure 1, the disappearance of the C–H aldehyde peaks at 2700–2850 cm⁻¹ and the appear-

Figure 1. FTIR spectra of reactants and all the synthesized C-phenylcalix[4]-resorcinarene derivatives.

ance of the C-H methine peak of C-phenylcalix[4] resorcinarenes at 1427–1430 cm⁻¹ indicated the successful formation of C-phenylcalix[4]resorcinarene and C-nitrophenylcalix[4]resorcinarenes. The presence of C-H methine on Cphenylcalix[4]resorcinarene and C-nitrophenylcalix[4] resorcinarenes was also confirmed by a singlet peak at 5.27-5.37 ppm on the ¹H-NMR spectra and a peak at 102.6-103.4 ppm on the ¹³C-NMR spectra, as shown in Figures S1–S4. Furthermore, the FTIR and NMR spectra of the Calix-H and the Calix-3NO₂ were in good agreement with the reported ones. $^{\scriptscriptstyle [20,26,27]}$ The identification of the Calix-2NO_2 and Calix-4NO_2 was also further conducted by LC-HRMS, which chromatogram and the spectra are depicted in Figures S1 and S3, respectively. The m/z of 973.00 and 973.70 as $[M+H]^+$ were obtained, further indicating the successful synthesis of these C-nitrophenylcalix[4]resorcinarenes.

Chemistry Europe

European Chemical Societies Publishing

Adsorption for gold(III) ions

The adsorption capability of C-phenylcalix[4]resorsinarene derivatives was evaluated to study the effect of the nitro substituent on the adsorption of gold(III) ions. Figure 2(a) shows the dependence of adsorption percentage on the

Figure 2. Effect of adsorbent mass (a) and time (b) on the adsorption of gold(III) ions using C-phenylcalix[4]resorcinarene derivatives.

amount of the adsorbent after 2 h-stirring. The adsorption percentage increased with the amount of adsorbent up to 15 mg on all the C-phenylcalix[4]resorsinarene derivatives. A further increase was not observed when the adsorbent amount was set to a higher amount, suggesting that 15 mg of adsorbent was enough to adsorb the gold(III) ions. It was noted that all the nitro-substituted C-phenylcalix[4]resorcinarenes gave a larger value of adsorption percentage as compared to the non-substituted one, with the order of Calix-2NO₂ > Calix-3NO₂ \approx Calix-4NO₂ > Calix-H.

Using the optimum mass of adsorbent (15 mg), the adsorption was examined under different contact times. The results are shown in Figure 2(b). The amount of adsorbed gold(III) ions increased with the increase of the contact time up to 120 min, suggesting that the equilibrium time was achieved after 120 min. The Calix-2NO₂ gave the highest adsorbed amount of gold(III) ions at the equilibrium (qe_{exp}) which value of 47.21 mg g⁻¹, followed by the Calix-3NO₂ and Calix-4NO₂, which gave 29.20 and 29.97 mg g⁻¹, respectively. The nitro-substituted *C*-phenylcalix[4] resorcinarenes showed higher qe_{exp} values than the Calix-H, which only gave 26.33 mg g⁻¹.

Isotherm adsorption was studied by varying the initial concentration of gold(III) ions. The dependence of initial concentration on the adsorbed amount of gold(III) ions is depicted in Figure 3. The maximum adsorption capacity (qm_{exp}) values of Calix-2NO₂, Calix-3NO₂, Calix-4NO₂, and Calix-H were confirmed to be 272.70, 163.00, 143.86, and 129.84 mg g⁻¹, respectively. To describe the isotherm adsorption in more detail, Langmuir and Freundlich models were employed in the calculation. While the obtained data did not give linear Freundlich plots, the adsorption of gold(III) ions fitted well the Langmuir isotherm model as shown in Figure S5 and Table S1. Since the process followed the Langmuir plot, the adsorption) rather than physical adsorption (physisorption).

The calculated maximum adsorption capacity (qm_{calc}), the Langmuir constant (K_L), the equilibrium parameter (R_L), and

Figure 3. Isotherm adsorption of gold(III) ions on the *C*-phenylcalix[4] resorcinarene derivatives.

coefficient of determination (R^2) for Langmuir plots are listed in Table 1. The qm_{calc} values of Calix-2NO₂, Calix-3NO₂, Calix-4NO₂, and Calix-H were 286.95, 178.41, 167.97, and 138.99 mg g⁻¹, respectively. It was obvious that these qm_{calc} values were very similar to those of the real uptake values (qm_{exp}). Besides, taking the initial concentration of 0.5 mM, the R_L values were confirmed in the range of 0.51–0.75, suggesting that the gold(III) ions adsorption on all adsorbents was a favorable process.

Good adsorbents can be evaluated from some parameters, such as the high maximum capacity of adsorption as well as the short equilibrium time. Table 2 lists the comparison of these two parameters on several reported adsorbents and the prepared adsorbents in this work. The Calix-2NO₂ showed a remarkably higher maximum adsorption capacity $(272.70 \text{ mg g}^{-1})$ than other adsorbent materials, including those functionalized by thiourea and thiol groups.^[29,31–33] Even though the Calix-2NO₂ gave a similar level of adsorption capacity to those of the reported polyethyleneimine^[14] and bisorbenttannin acid immobilized dialdehyde corn starch,^[16] the Calix- $2NO_2$ required a much shorter equilibrium time (2 h) than either the polyethylene imine (6 h)^[14] or the biosorbent-tannin acid immobilized dialdehyde corn starch (12 h),[16] highlighting the potential use of the Calix-2NO₂ as a good adsorbent for the gold(III) ions.

Kinetics and thermodynamic studies

The kinetics of gold(III) ions adsorption was examined by four kinetic models, namely first order, second order, pseudo-firstorder, and pseudo-second-order adsorption. As listed in Table 3, most of the *C*-phenylcalix[4]resorcinarene adsorbents gave better *R*² value for the pseudo-second-order adsorption than other kinetics models. As the adsorption process of gold(III) ions followed the pseudo-second-order kinetic model, the rate-determining step for gold(III) ions adsorption would be the surface adsorption onto *C*-phenylcalix[4]resorcinarene adsorbents.^[28,34] This could involve the surface interactions of the hydroxyl and nitro functional groups of *C*-phenylcalix[4] resorcinarene with gold(III) ions. This adsorption model was also proposed for other metal ion adsorption on carbon nanotube adsorbent.^[35]

Table 1. Langmuir parameters of gold(III) ions adsorption on C-phenylcalix- [4]resorcinarene derivatives.					
Adsorbent	<i>qm_{calc}</i> (mg g ⁻¹) ^[a]	$K_{L} (L mg^{-1})^{[b]}$	$R_L^{[c]}$	R ²	
Calix-2NO ₂	286.95	4.71×10 ⁻³	0.68	0.9949	
Calix-3NO ₂	178.41	5.31×10^{-3}	0.66	0.9936	
Calix-4NO ₂	167.97	3.30×10^{-3}	0.75	0.9930	
Calix-H	138.99	9.78×10 ⁻³	0.51	0.9904	

[a] qm_{calc} value was calculated from the inversed slope of a linear Langmuir plot (see Table S1 for Langmuir equation). [b] K_L was obtained from the Langmuir plot (see Table S1 for Langmuir equation). [c] R_L value was calculated from the inversed value of $1 + (K_L \times Co)$.

Table 2. Comparison of adsorption capability towards gold(III) ions using several adsorbent materials.				
Adsorbent	Adsorbent amount (g L^{-1})	Contact time (min)	qm_{exp} (mg g ⁻¹)	Reference
Calcined gibsite	0.40	1440	12.00	[7]
Activated carbon	1.28	360	9.95	[13]
Polyethylene imine	1.00	90	286.00	[14]
Montmorillonite/alginate	100	720	1.49	[15]
composite				
Tannin acid immobilized	0.83	120	298.50	[16]
dialdehyde corn starch				
Clay mineral composite	40.0	60	108.30	[28]
Thiourea modified	1.50	400	118.46	[29]
magnetite nanoparticle				
Mesoporous silica adsorbent	1.00	120	78.80	[30]
Thiol-cotton fiber	2.0	n.a.	68.00	[31]
Thiol-functionalized	1.50	220	43.70	[32]
Fe ₃ O ₄ @SiO ₂ microspheres				
Thiol-ene hydrogel	5.0	120	45.19	[33]
Calix-2NO ₂	1.50	120	272.70	Present work
Calix-3NO ₂	1.50	120	163.00	Present work
Calix-4NO ₂	1.50	120	143.86	Present work
Calix-H	1.50	1440	129.84	Present work

Table 3. Kinetic and adsorption diffusion models of gold(III) adsorption using C-phenylcalix[4]resorcinarene derivatives.					
Model	Equation		R^2		
		Calix-2NO ₂	Calix-3NO ₂	Calix-4NO ₂	Calix-H
Kinetic Models					
First order	$\ln qt = -k t + \ln qo$	0.9825	0.9546	0.9650	0.9859
Second order	1/qt = k t + 1/qo	0.9208	0.9656	0.9642	0.9930
Pseudo first order	ln (qe–qt)=In qe–k t	0.9059	0.9761	0.9168	0.9972
	$t/qt = 1/kqe^{-2} + t/qe$	0.9921	0.9817	0.9806	0.9908
	qe_{calc} (mg g ⁻¹)	48.24	31.36	30.50	29.95
Pseudo second order	qe_{exp} (mg g ⁻¹)	47.21	29.20	29.97	26.33
	$k (g mg^{-1} min^{-1})$	1.98×10 ⁻³	1.61×10^{-3}	1.59×10^{-3}	1.14×10 ⁻³
Adsorption Diffusion Models					
Intraparticle diffusion	$qt = k t^{-0.5} + C$	0.9273	0.9938	0.9405	0.9901
	$k ({ m mg}{ m g}^{-1}{ m min}^{-0.5})$	3.71	2.81	2.37	2.32
Liquid film diffusion	$\ln\left(1-qt/qe\right)=-k\ t$	0.9829	0.9761	0.9280	0.8449

Based on the linear plots of the pseudo-second-order model, the amount of adsorbed gold(III) ions in equilibrium could be calculated (qe_{calc}). It was confirmed that the qe values obtained from the experimental and the calculated ones were at a similar level to each other, suggesting that the proposed kinetic model was suitable to explain the adsorption process. The adsorption rate constants (k) were determined from the pseudo-second-order model and the values are also listed in Table 3. It was obtained that the k values of the C-nitro-phenylcalix[4]resorcinarenes were higher than that of the Calix-H. Besides having the highest maximum adsorption rate towards gold(III) ions.

To understand the diffusion model in gold(III) ions adsorption, two types of adsorption diffusion models were examined, which were intraparticle and liquid film diffusions. The equations used and the R^2 values for each model could be seen in Table 3. In general, the adsorption data were better fitted to the intraparticle than the liquid film diffusion model.

This result showed that the adsorption of gold(III) ions onto the *C*-phenylcalix[4]resorcinarene materials was a diffusion-controlled process. Since the adsorption data fitted the pseudo-second-order and intraparticle diffusion, the overall rate-determining step could be complex.^[36] As the trend of the calculated adsorption constant rate (*k*) values employing this intraparticle diffusion model were similar to that of the pseudo-second-order kinetic model, the adsorption rate would be strongly affected by the diffusion-controlled process.

The thermodynamic parameters such as enthalpy change (ΔH) , Gibbs energy change (ΔG) , and entropy change (ΔS) values of the gold(III) ions adsorption were investigated on the *C*-phenylcalix[4]resorcinarenes by varying the adsorption temperatures. The correlation between these parameters can be determined according to the following equations (1)–(4), whereas *K* is the equilibrium constant, C_s is the concentration of gold(III) in the *C*-phenylcalix[4]arenes after adsorption (mM), C_e is the equilibrium concentration of gold(III) ions in the

aqueous solution (mM), *R* is the gas constant (8.314 J mol⁻¹ K⁻¹), and *T* is the adsorption temperature (K).^[7,37]

$$K = C_s / C_e \tag{1}$$

 $d\ln K/d(1/T) = -\Delta H/R$ (2)

$$\Delta G = -RT \ln K \tag{3}$$

$$\ln K = \Delta S/R - \Delta H/RT \tag{4}$$

The calculated thermodynamic parameters are listed in Table 4. The gold(III) ions adsorption on all the C-phenylcalix[4] resorcinarenes was shown to be an exothermic process ($\Delta H <$ 0). The ΔH value can be used to indicate whether the adsorption is physisorption (-4 to $-40 \text{ kJ} \text{ mol}^{-1}$) or chemisorption (-40 to -800 kJ mol⁻¹).^[38] Since the ΔH values were in the range of -52.50 to -94.50 kJ mol⁻¹, the gold(III) ions adsorption occurred through a chemisorption process, in good agreement with the linear Langmuir plot discussed previously. Since the ΔH value of Calix-2NO₂ was much lower than those of the Calix-3NO₂ and the Calix-4NO₂, the chemical interactions between gold(III) ions and Calix-2NO2 adsorbent would be much stronger than those that occurred on the Calix-3NO₂ and the Calix-4NO₂. The stronger interaction would lead to the larger adsorbed amount of gold(III) ions, which could be also indicated from the larger qe_{exp} and qm_{exp} values, whereas the order was Calix-2NO₂ > Calix-3NO₂ \approx Calix-4NO₂.

The ΔG values were in the range of -10 to -13 kJ mol⁻¹, indicating that the gold(III) ions adsorption on C-phenylcalix[4] resorcinarene derivatives occurred spontaneously. Increasing the adsorption temperature resulted in a lower amount of adsorbed gold(III) ions as the adsorption-desorption equilibrium would be affected. A similar effect in the adsorption process was reported in which the increased temperature led to a decrease in adsorption driving force.^[39] Therefore, a temperature of 298 K was the most preferable temperature to obtain the highest gold(III) ions adsorption. All the *C*phenylcalix[4]resorcinarene derivatives gave negative ΔS values, implying that the randomness was decreased in the solidsolution interface during the adsorption process, which was similar to the previous report.^[37] Again the ΔS value on the Calix-2NO₂ was more negative than the other adsorbents,

Table 4. Thermodynamic parameters on the gold(III) adsorption of using C- nitrophenylcalix[4]resorcinarenes at different adsorption temperatures.				
Adsorbent	Т (К)	ΔH (kJ mol ⁻¹)	ΔG (kJ mol ⁻¹)	ΔS (J mol ⁻¹ K ⁻¹)
Calix-2NO ₂	298 303 308	-94.50	-13.37 -11.64 -10.65	-272.2 -273.5 -272.2
Calix-3NO ₂	298 303 308	-52.96	12.27 11.47 10.91	—136.5 —136.9 —136.5
Calix-4NO ₂	298 303 308	-52.50	12.37 11.55 11.02	—134.7 —135.1 —134.7

suggesting that the least disordered adsorption occurred on the Calix- $2NO_2$.

Effect of nitro group position

As shown previously, the nitro substituent (-NO₂) enhanced the adsorption capability of the C-phenylcalix[4]resorcinarene framework, where the order was $Calix-2NO_2 > Calix-3NO_2 \approx$ Calix-4NO₂ > Calix-H. To elucidate the reasons for such a result, spectroscopic studies using FTIR and ¹H-NMR were performed to compare the adsorbent materials before and after the adsorption process. The FTIR spectra of all C-phenylcalix[4] resorcinarene derivatives before and after the gold(III) ions adsorption are shown in Figure 4. The stretching vibration of the hydroxyl group (-OH_{str}) of C-phenylcalix[4]resorcinarenes could be observed around 3372.8-3428.8 cm⁻¹. The vibration peaks were shifted to a higher wavenumber at 3401.8-3447.1 cm⁻¹ after the adsorption of gold(III) ions. When the gold(III) ions were adsorbed on C-phenylcalix[4]resorcinarene, the partially negative oxygen atom in the hydroxyl group could form electrostatic interactions to the gold(III) ions, forming the gold(III)-calix complex. Such interactions would lead to the disturbance on the intramolecular hydrogen bonding of Cphenylcalix[4]resorcinarene. Therefore, it was reasonable to observe the shifting of the -OH_{str} signals to a higher wavenumber region. The shifting difference of each C-phenylcalix[4] resorcinarene derivative before and after the adsorption process was calculated. It was found that the difference in -OH_{str} stretching wavenumbers for Calix-2NO₂, Calix-3NO₂, and Calix-4NO₂ were 41.5, 29.0, and 18.3 cm⁻¹, respectively. This result suggested that the strongest electrostatic interactions occurred between the gold(III) ions and the Calix-2NO₂. Furthermore, the stretching signal of the -NO₂ group in Cphenylcalix[4]resorcinarene was also shifted to a higher wavenumber caused by the intramolecular interactions between the -NO₂ groups and the gold(III) ions. It was found that the difference in -NO₂ stretching wavenumbers for Calix-2NO₂,

Figure 4. FTIR spectra of C-nitrophenylcalix[4]resorcinarene adsorbents before and after adsorption of gold(III) ions.

Calix-3NO₂, and Calix-4NO₂ were 3.9, 2.0, and 1.8 cm^{-1} , respectively. This result indicated that the $-NO_2$ group facilitated the gold(III) ions adsorption.

To further clarify the supramolecular interactions above, the ¹H-NMR spectra of Calix-2NO₂ before and after the gold(III) ions adsorption were recorded and shown in Figure 5. The Calix-2NO₂ was used as the representative adsorbent as it exhibited the highest adsorption capacity for gold(III) ions. It was obvious that the proton signals from the –OH group in Calix-2NO₂ were simplified to be a broad singlet and shifted to the downfield from 9.0 to 8.75 ppm after the gold(III) ions adsorption. This result suggested that some of the -OH groups could be deprotonated due to electrostatic interaction with gold(III) ions.^[40] Meanwhile, the weakened hydrogen bonding would lead to the downfield shifting. In addition, the aromatic rings of Calix-2NO₂ after gold(III) ions adsorption were confirmed to be more ordered than before the adsorption, indicating the formation of a more rigid conformation as the result of the interactions in the gold(III)-calix complex. The aromatic proton signals of free Calix-2NO₂ were found as multiplet which attributed to the mobile conformation of the Calix-2NO₂. In contrast, the aromatic proton signals of gold(III)-calix complex was simpler and sharper, which suggested that the gold(III) ions locked the Calix-2NO₂ in cone conformation due to cation- π interactions as previously reported. $^{[41]}$ The merging of the -CH₂ proton signal from the methine bridge was also observed that also supported the existence of gold(III)-calix in cone conformation.

It was demonstrated that the position of nitro substituent affected the adsorption capacity of the Calix-H differently. As for the Calix-2NO₂, the $-NO_2$ group was in ortho position which was very close to the position of the hydroxyl group in calix[4] resorcinarene framework. This position would create a strong stabilization inductive effect, giving the high complexation energy to form gold(III)-calix complex. As a result, the stronger interaction would lead to a higher adsorption capability. Since the $-NO_2$ group of the Calix-3NO₂ and the Calix-4NO₂ was located at meta and para position, weaker complexation energy of gold(III)-calix was generated, yielding a lower *qm* value than the Calix-2NO₂ but higher than the Calix-H.

Figure 5. ¹H-NMR spectra of Calix-2NO₂ before and after adsorption of gold(III) ions.

Desorption of gold(III) ions and reusability test

The calculated complexation energy as well as the FTIR and ¹H-NMR spectra revealed that among the *C*-phenylcalix[4] resorcinarene derivatives, the Calix-2NO₂ has the strongest supramolecular interactions towards gold(III) ions. A further study was conducted to desorb the gold(III) ions that were adsorbed onto *C*-nitrophenylcalix[4]resorcinarenes with the help of an acidic solution. It was obtained that the desorption of gold(III) ions were 7.36, 8.20, and 14.14 mg g⁻¹ or 15.58, 28.09, and 47.18% for Calix-2NO₂, Calix-3NO₂, and Calix-4NO₂, respectively, when using HCl 0.1 M after 2 h-contact time. Among the *C*-nitrophenylcalix[4]resorcinarenes, the Calix-2NO₂ gave the lowest amount of desorbed gold(III) ions, again indicating the strongest interactions of the Calix-2NO₂ towards the gold(III) ions.

The desorption percentage of gold(III) ions from the Calix-2NO₂ could be improved further when employing an acidic solution with greater concentration or stronger acidity. Increasing the HCl concentration from 0.1 to 1.0 M slightly increased the desorption percentage from 15.58 to 20.02%. By using stronger acid reagents, *i.e.* 1.0 M HNO₃ and 1.0 M H₂SO₄, higher desorption percentages were achieved as high as 25.18 and 31.22%, respectively. Since the acidic solution treatment could not desorb completely the gold(III) ions, another desorption process was employed. It was reported that the acidic conditions could lead to the reduction of gold(III) ions to gold(0).^[42-44] Such reduction mechanism was also reported in the adsorption of gold(III) ions on the tannin acid immobilized dialdehyde corn starch.^[16] Therefore, the possibility that Cphenylcalix[4]resorcinarene mediated partially the reduction of gold(III) under acidic conditions could not be excluded. Since H_2O_2 has been reported to increase the rate of Au oxidation and metallurgical Au recovery,^[45,46] H₂O₂ was used to leach out the reduced gold(III) from the Calix-2NO₂ via the oxidation process. It was confirmed that additional gold(III) desorption was achieved (69.28%), giving a successful completion of gold(III) desorption from the Calix-2NO₂. Comparison to thiolfunctionalized adsorbent,^[31] the desorption process on the Calix-2NO₂ was milder as thermal process and highly concentrated acid solutions were not required.

The gold(III)-free Calix-2NO₂ adsorbent was then reused for the adsorption of gold(III) ions up to three cycles. Each adsorption process was followed by the desorption treatments stated above. After three cycles, the adsorption of gold(III) ions on the Calix-2NO₂ was mostly at the same level of 82.15, 77.41, and 75.10%. The desorption of gold(III) ions reached ~100% after each cycle. Furthermore, the structure of Calix-2NO₂ was not significantly changed after reusing it for three cycles as shown from the FTIR and DR UV-vis data in Figures S6 and S7, respectively. All these results indicated the stability and the potential capability of the Calix-2NO₂ to be employed in gold(III) recovery process.

Proposed supramolecular interactions between gold(III) ions and C-phenylcalix[4]resorcinarene derivatives

Since the adsorption of gold(III) ions using C-phenylcalix[4] resorcinarene derivatives happened through a chemisorption process, the interactions between gold(III) ions and the Cphenylcalix[4]resorcinarene could occur through the formation of gold(III)-calix complex. Our experimental data showed that the existence of the $-NO_2$ group at ortho (Calix-2NO₂), meta (Calix-3NO₂), and para (Calix-4NO₂) positions enhanced the adsorption capability of the Calix-H adsorbent. The -NO₂ group at the C-phenylcalix[4]resorcinarene framework would interact with gold(III) ions as its oxygen atoms have a partial negative charge. Moreover, the spectroscopic study confirmed that the hydroxyl groups interacted with gold(III) ions through electrostatic interactions. All these results suggested that the gold(III) ions would interact better when the position of the -NO2 group is closer to –OH or in other words when the –NO₂ group is in the ortho position.

As the C-phenylcalix[4]resorcinarene has been recognized to have a cavity to trap metal ions through cation- π interaction,^[47-49] the possibility to form the gold(III)-calix complex inside the calix cavity could not be neglected. This would give us at least two possibilities to form the gold(III)-calix complex, *i.e.*, outside the calix cavity and/or inside the calix cavity. The plausible interactions between the gold(III) ions and the Calix-2NO₂ are then proposed in Figure 6. The complex structure was proposed considering the cone conformation of calix as supported by its ¹H-NMR spectrum.

Conclusion

Three types of nitro-substituted *C*-phenylcalix[4]resorcinarenes were successfully synthesized with the yield of 39.6–95.5% through a single-step reaction. The optimum amount, contact time, and temperature for gold(III) ions adsorption on all the *C*-

Figure 6. Plausible formation of gold(III)-calix complex structure at the (a) outside and (b) inside of the calix cavity.

phenylcalix[4]resorcinarene adsorbents were 15 mg, 120 min, and 298 K, respectively. Under the optimum conditions, the qm_{exp} values for gold(III) adsorption on the Calix-2NO₂, the Calix-3NO₂, the Calix-4NO₂, and the Calix-H were obtained as 272.70, 163.00, 143.86, and 129.84 mg g⁻¹, respectively. The gold(III) ions adsorption process fitted well the Langmuir plot and it was shown as a favorable process on all adsorbents. The kinetic study revealed that the gold(III) ions adsorption followed the pseudo-second-order kinetic model and could occur through the intraparticle diffusion mechanism. The thermodynamic parameters indicated that the adsorption occurred more on Calix-2NO₂ due to the higher exothermic enthalpy energy, as also supported by its spontaneous process and less disordered entropy. From the spectroscopic studies, it was revealed that the gold(III) ions interacted with both hydroxyl and nitro groups as well as aromatic rings of Cphenylcalix[4]resorcinarene derivatives through electrostatic and cation- π interactions. Furthermore, when the -NO₂ group was located closer to calix[4]resorcinarene cavity, the gold(III) ions could be adsorbed stronger, resulting in the adsorption capability was also in the order of $Calix-2NO_2 > Calix-3NO_2 \approx$ Calix-4NO₂ > Calix-H. The reusability test demonstrated that the Calix-2NO₂ can be applied to the recovery of gold(III) ions.

Supporting Information Summary

Supporting Information includes the detailed experimental section, the ¹H-NMR, ¹³C-NMR, LC chromatogram, and HRMS spectra of *C*-phenylcalix[4]resorcinarene derivatives, Langmuir plots for adsorption of gold(III) ions on the *C*-phenylcalix[4]-resorcinarene derivatives, the FTIR and DR UV-vis spectra of the Calix-2NO₂ before and after reusability test, as well as the coefficient determination using four adsorption models for the adsorption of gold(III) ions on the *C*-phenylcalix[4]resorcinarene derivatives.

Acknowledgements

Support from Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Universitas Ma Chung via Mandiri Research Grant No. 074/MACHUNG/LPPM-LIT-MANDIRI/IV/2020 for this research work is greatly acknowledged.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: adsorption \cdot *C*-phenylcalix[4]resorcinarene \cdot gold(III) ions \cdot nitro group \cdot supramolecular interactions

- [1] R. Khosravi, A. Azizi, R. Ghaedrahmati, V. K. Gupta, S. Agarwal, J. Ind. Eng. Chem. 2017, 54, 464–471.
- [2] F. Liu, S. Wang, S. Chen, Int. J. Biol. Macromol. 2020, 152, 1242–1251.
- [3] C. Wang, G. Lin, J. Zhao, S. Wang, L. Zhang, Chem. Eng. J. 2020, 388 124221.
- [4] B. Xu, K. Li, Z. Dong, Y. Yang, Q. Li, X. Liu, T. Jiang, J. Cleaner Prod. 2019, 233, 1475–1485.

- [5] S.-I. Park, I. S. Kwak, S. W. Won, Y.-S. Yun, J. Hazard. Mater. 2013, 248, 211–218.
- [6] B. Xu, W. Kong, Q. Li, Y. Yang, T. Jiang, X. Liu, *Metals* 2017, 7, 222.
- [7] F. Ogata, N. Kawasaki, J. Chem. Eng. Data 2014, 59, 412–418.
- [8] Z. Reddad, C. Gerente, Y. Andres, P. L. Cloirec, *Environ. Sci. Technol.* 2002, 36, 2067–2073.
- [9] F. J. Alguacil, P. Adeva, M. Alonso, Gold Bull. 2005, 38, 9-13.
- [10] J. Baker, R. J. Baker, C. Schulzke, Gold Bull. 2011, 44, 79-83.
- [11] J. Yang, F. Kubota, Y. Baba, N. Kamiya, M. Goto, Carbohydr. Polym. 2014, 111, 768–774.
- [12] S. Syed, Hydrometallurgy 2012, 115-116, 30-51.
- [13] P. J. Tauetsile, E. A. Oraby, J. J. Eksteen, Sep. Purif. Technol. 2019, 211, 594–601.
- [14] B. C. Choudhary, D. Paul, A. U. Borse, D. J. Garole, Sep. Purif. Technol. 2018, 195, 260–270.
- [15] A. Mourpichai, T. Jintakosol, W. Nitayaphat, *Mater. Today: Proc.* 2018, 5, 14786–14792.
- [16] F. Liu, G. Peng, T. Li, G. Yu, S. Deng, Chem. Eng. J. 2019, 370, 228-236.
- [17] R. R. Sathuluri, Y. S. Kurniawan, J. Y. Kim, M. Maeki, W. Iwasaki, S. Morisada, H. Kawakita, M. Miyazaki, K. Ohto, *Sep. Sci. Technol.* 2018, *53*, 1261–1272.
- [18] Y. S. Kurniawan, R. R. Sathuluri, K. Ohto, W. Iwasaki, H. Kawakita, S. Morisada, M. Miyazaki, J. Jumina, Sep. Purif. Technol. 2019, 211, 925–934.
- [19] I. G. M. N. Budiana, J. Jumina, C. Anwar, J. Appl. Chem. Sci. 2016, 3 289– 298.
- [20] L. M. Tunstad, J. A. Tucker, E. Dalcanale, J. Weiser, J. A. Bryant, J. C. Sherman, R. C. Helgeson, C. B. Knobler, D. J. Cram, J. Org. Chem. 1989, 54, 1305–1312.
- [21] J. Jumina, R. E. Sarjono, D. Siswanta, S. J. Santoso, K. Ohto, J. Korean Chem. Soc. 2011, 55, 454–462.
- [22] H. M. Chawla, N. Pant, S. Kumar, S. Mrig, B. Srivastava, N. Kumar, D.StC. Black, J. Photochem. Photobiol. B. 2011, 105, 25–33.
- [23] M. Tabakci, S. Erdemir, M. Yilmaz, J. Hazard. Mater. 2007, 148, 428-435.
- [24] U. Rastuti, D. Siswanta, W. Pambudi, B. A. Nurohmah, B. M. Yamin, J. Jumina, Sains Malays. 2018, 47, 1167–1179.
- [25] G. Lin, T. Hu, S. Wang, T. Xie, L. Zhang, S. Cheng, L. Fu, C. Xiong, *Chemosphere* 2019, 225, 65–72.
- [26] K. T. A. Priyangga, Y. S. Kurniawan, L. Yuliati, *lop. Conf. Ser. Mater. Sci. Eng.* 2020, 959, 012014.
- [27] B. M. Yamin, H. M. Abosadiya, S. A. Hasbullah, J. Jumina, Int. J. Adv. Sci. Eng. Inf. Technol. 2014, 4, 125–128.

- [28] Y. Rakhila, A. Elmchaouri, A. Mestari, S. Korili, M. Abouri, A. Gil, Int. J. Miner. Metall. Mater. 2019, 26, 673–680.
- [29] T.-L. Lin, H.-L. Lien, Int. J. Mol. Sci. 2013, 14, 9834–9847.
- [30] K. F. Lam, K. L. Yeung, G. McKay, J. Phys. Chem. B. 2006, 110, 2187–2194.
 [31] M. Yu, D. Sun, W. Tian, G. Wang, W. Shen, N. Xu, Anal. Chim. Acta 2002, 456, 147–155.
- [32] X. Peng, W. Zhang, L. Gai, H. Jiang, Y. Tian, Russ. J. Phys. Chem. A 2016, 90, 1656–1664.
- [33] M. Fırlak, M. V. Kahraman, E. K. Yetimoğlu, J. Appl. Polym. Sci. 2012, 126, 322–332.
- [34] H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang, J. Colloid Interface Sci. 2007, 316, 277–283.
- [35] D. Robati, J. Nanostructure Chem. 2013, 3, 55.
- [36] A. Pholosi, E. B. Naidoo, A. E. Ofomaja, S. Afr. J. Chem. Eng. 2020, 32, 39– 55.
- [37] J. S. Piccin, G. L. Dotto, L. A. A. Pinto, Braz. J. Chem. Eng. 2011, 28, 295– 304.
- [38] G. Crini, P.-M. Badot, Prog. Polym. Sci. 2008, 33, 399-447.
- [39] I. Uzun, F. Güzel, J. Hazard. Mater. 2005, B118, 141–154.
- [40] J. Jumina, Y. Priastomo, H. R. Setiawan, Mutmainah, Y. S. Kurniawan, K. Ohto, J. Environ. Chem. Eng. 2020, 8, 103971.
- [41] J. Jumina, D. Siswanta, K. Nofiati, A. C. Imawan, Y. Priastomo, K. Ohto, Bull. Chem. Soc. Jpn. 2019, 92, 825–831.
- [42] M. Luty-Błocho, K. Pacławski, M. Wojnicki, K. Fitzner, *Inorg. Chim. Acta* 2013, 395, 189–196.
- [43] Z. Khan, T. Singh, J. I. Hussain, A. A. Hashmi, Colloids Surf. B 2013, 104, 11–17.
- [44] K. Pacławski, T. Sak, J. Min. Metall. Sect. B. 2015, 51, 133-142.
- [45] Q. Zhu, J. Wu, J. Zhao, W. Ni, *Langmuir* **2015**, *31*, 4072–4077.
- [46] T. O. Nunan, I. L. Viana, G. C. Peixoto, H. Ernesto, D. M. Verster, J. H. Pereira, J. M. Bonfatti, L. A. C. Teixeira, *Miner. Eng.* 2017, 108, 67–70.
- [47] A. S. Mahadevi, G. N. Sastry, *Chem. Rev.* **2013**, *113*, 2100–2138.
- [48] H. Kumari, P. Jin, S. J. Teat, C. L. Barnes, S. J. Dalgarno, J. L. Atwood, J. Am. Chem. Soc. 2014, 136, 17002–17005.
- [49] E. S. Español, M. M. Villamil, Biomol. 2019, 9, 90.

Submitted: March 22, 2021 Accepted: May 18, 2021

ChemistrySelect

European Chemical Societies Publishing

ChemistrySelect

Editorial Board

Chairs

Didier Astruc is a full professor of chemistry at the Université Bordeaux I. He is known for his work on "electronreservoir" complexes, dendritic molecular batteries, green catalysis, and sensors.

<u>Hélène Lebel</u> is a professor of chemistry at the Université de Montréal. Her research is focused on catalysis in synthetic organic chemistry, pharmacologically useful molecules, and multicatalytic processes that mimic biosynthesis in living cells.

-

An-Hui Lu is a professor of chemistry at the State Key Laboratory of Fine Chemicals, Dalian University of Technology. His research interests include the synthesis of porous materials for heterogeneous catalysis, adsorption, energy storage and conversion.

Members

Yuehe Lin (Washington State University) Chenghui Liu (Shaanxi Normal University) Chun-yan Liu (Technical Institute of Physics and Chemistry, CAS) Gregor Mali (Kemijski inštitut Ljubljana Slovenija) Jose L. Marco-Contelles (Química Orgánica General del CSIQ) Sherri McFarland (University of North Carolina at Greensboro) Gabriel Merino (Centro de Investigación y de Estudios Avanzados Unidad Mérida) Kenji Miyatake (University of Yamanashi) Yirong **Mo** (Western Michigan University) Thomas E. Müller (RWTH Aachen) Samir H. Mushrif (University of Alberta) <u>Srinivasan **Natarajan** (Indian Institute of Science, Bangalore</u>) Georgii I. Nikonov (Brock University) C• Turan Öztürk (Istanbul Technical University) Mario Pagliaro (Istituto per lo Studio dei Materiali Nanostrutturati del CNR, Palermo) Maurizio Peruzzini (Dipartimento Scienze Chimiche e Technologie del CNR) <u>Teresa M. V. D. Pinho e Melo (Universidade De Coimbra)</u> Uwe Pischel (Universidad de Huelva) László **Poppe** (Budapesti Műszaki és Gazdaságtudományi Egyetem) Vinich Promarak (Vidyasirimedhi Institute of Science and Technology) Rasmita **Raval** (University of Liverpool) Leni **Ritmaleni** (Universitas Gadjah Mada) Johan Rosengren (The University of Queensland) Liane Marcia Rossi (Universidade de São Paulo) Agnieszka Ruppert (Politechnika Łódzka) Ulrich Schatzschneider (Julius-Maximilians-Universität Würzburg) YuYe Jay Tong (Georgetown University) Konstantinos S. Triantafyllidis (Aristotle University of Thessaloniki) += Andrew Tsotinis (University of Athens) Xinchen Wang (Fuzhou University) Gang **Wu** (University at Buffalo)

Former Members

Christian Heinis (École Polytechnique Fédérale de Lausanne)
 Knud Jensen (Københavns Universitet)
 Gaoquan Shi (Tsinghua University)

Submit a Manuscript

Browse free sample issue

- ▲ Get content alerts
- Subscribe to this journal

More from this journal

- Reviews
- Editorials
- Video Abstracts

ChemistrySelect

Volume 6, Issue 21 Pages: 5166-5373 June 8, 2021 ററററററ

< Previous Issue | Next Issue >

:≡ GO TO SECTION

* Export Citation(s)

Cover Pictures

Free Access Cover Picture: (21/2021)

Pages: 5166 | First Published: 01 June 2021

Abstract Full text PDF Request permissions

Full Papers

Organic & Supramolecular Chemistry

Ethynylation of [1,2,4]Triazolo[1,5-a]pyrimidinesUsing Substituted Ethynylmagnesium Bromides

Dr. Nikolay A. Rasputin, Dr. Nadezhda S. Demina, Dr. Ekaterina F. Zhilina, Dr. Maksim A. Averkov, Dr. Gennady L. Rusinov, Prof. Oleg N. Chupakhin, Prof. Valery N. Charushin

Pages: 5167-5172 | First Published: 01 June 2021

A simple, transition metal-free method for the functionalization of [1,2,4]triazolo[1,5-o]pyrimidines has been described. Mono- and disubstituted of [1,2,4]triazolo[1,5-o]pyrimidines were obtained using substituted ethynylmagnesium bromides via elemination and oxidation pathways of hydrogen nucleophilic substitution. The photophysical and redox properties of the obtained compounds showed their as promising UV-dyes with high quantum yields up to 0.82

Abstract Full text PDF References Request permissions

Medicinal Chemistry & Drug Discovery

Synthesis and In Vitro Anticancer Activities of New 1,4-Disubstituted-1,2,3-triazoles Derivatives through Click Approach

Submit a Manuscript

Browse free sample issue

Get content alerts

Subscribe to this journal

More from this journal

- ReviewsEditorials
- Video Abstracts

Chemistry Europe

European Chemical Societies Publishing

NEW JOURNAL: Electrochemical Science Advances

Electrochemical Science Advances Accepting submissions now.

ISSUE Volume 1, Issue 2 Pages: 70-100 April 2021

ISSUE Volume 1, Issue 6 Pages: 245-304 June 2021

ISSUE Volume 2, Issue 5-6 Pages: 261-342 June 2021

ISSUE Volume 27, Issue 36 Pages: 9193-9460 June 25, 2021

Amol S, Nipate, Chetan K, Jadhav, Dr, Asha V, Chate, Dr, Teishri R, Deshmukh, Dr, Aniket P, Sarkate, Prof, Charansingh, H, Gill

Pages: 5173-5179 | First Published: 01 June 2021

The synthesis of a new series 1-(3-methoxy-4-((1-phenyl-1H-1,2,3-triazole-4yl)methoxy) phenyl)ethanone via click chemistry approach utilizing azidealkyne cycloaddition reactions is reported in this study.

ISSUE Volume 10. Issue 6 Pages: 607-652 June 2021

ISSUE Volume 6. Issue 24 Pages: 5847-6313 June 28, 2021

ISSUE

ISSUE Volume 5. Issue 6 Pages: 491-591

June 2021

Volume 4. Issue 6 Pages: 845-1031 June 2021

Abstract Full text PDF References Request permissions

Catalysis

Effects of Mn^{II} and Eu^{III} Cation Exchange in Sepiolite-Titanium Dioxide Nanocomposites in the Photocatalytic Degradation of Orange G

Dr. Brittany A. Cymes, Dr. Alex J. Kugler, Dr. Catherine B. Almquist, Dr. Richard E. Edelmann, Dr. Mark P. S. Krekeler Pages: 5180-5190 | First Published: 01 June 2021

Nanocomposite photocatalysts consisting of titanium dioxide nanoparticles grown in-situ on Mn^{II}- or Eu^{III}-exchanged sepiolite fibers were fabricated and tested in ultraviolet-assisted degradation of Orange G. We have confirmed this two-step fabrication process results in unpredictable dopant migration and results in suboptimal hole (h^+) and superoxide (O_2^-) production and transport.

Abstract Full text PDF References Request permissions

ISSUE Volume 22, Issue 12 Pages: 2010-2181 June 15, 2021

Volume 13, Issue 12 Pages: 2743-2958 June 18, 2021

ISSUE

Communications

Sustainable Chemistry

Direct Phase-Transition Catalysed Monohalogenation of 8-Amidoguinolines at C5 Position in Water

Dr. Xin He, Yujia Jiang, Dr. Haiping Zhou, Dr. Qihua Zhu

Pages: 5191-5194 | First Published: 01 June 2021

This protocol provided a convenient strategy to halogenation of 8-amidoquinolines at C5 position using dihalogenated hydantoin as halogen under aqueous condition, promoted by phase-transition catalyst, affording desired products with moderate to excellent yield (20 examples, up to 99.1 % yield). This process was featured with metal-free, no oxidant and performed in water and room temperature, especially, it could be applied in Clioquinol production.

Abstract Full text PDF References Request permissions

Full Papers

Catalysis

Copper(I)-Catalyzed Cascade Cyclization to the Total Synthesis of Hexahydropyrroloindole Alkaloids: Flustramine B and Debromoflustramine B

Xianfu Shen, Tianfeng Peng, Fan Wang, Shumin Li, Xingfu Lei, Yunxiao, Wang, Feixiang Cheng, Teng Liu Pages: 5195-5197 | First Published: 01 June 2021

ISSUE Volume 86. Issue 6 Pages: 794-966 June 2021

Copper(I)-Catalyzed Cascade Cyclization to the Total Synthesis of Hexahydropyrroloindole Alkaloids: Flustramine B and Debromoflustramine B In this work, we have accomplished the total synthesis of two bioactive hexahydropyrroloindole (HPI) alkaloids bearing a C3a tetrasubstituted stereocenters substituted by isopentenyl. Our route was based on Cu-catalyzed cascade arylation-

ISSUE Volume 8, Issue 12 Pages: 2150-2352 June 14, 2021

ISSUE Volume 22, Issue 12 Pages: 1148-1285 June 16, 2021

alkylation sequence in one-pot as a key step, providing Flustramine B and Debromoflustramine B with 9 steps in 37.6 % and 31.1 % overall yields, respectively.

Abstract Full text PDF References Request permissions

Organic & Supramolecular Chemistry

Copper-Catalyzed Sonogashira-Cross-Coupling of Phenols Using Dichloroimidazolidinedione

Negin Hosseini, Dr. Javad Mokhtari, Prof. Issa Yavari

Pages: 5198-5202 | First Published: 01 June 2021

In the present work phenols derivatives were activated by dichloroimidazolidinedione (DCID) and the resulting MCIDlated phenols used in the sonogashira cross-coupling for the first time. MCIDlated phenols reacted efficiently with different substituted phenyl acetylenes, the electronic and steric effects on the yields was examined in this reaction system and phenols with electron-donating groups in para, ortho and metha position and disubstituted phenols furnished the products in good yields (65–78 %).

Abstract Full text PDF References Request permissions

Materials Science inc. Nanomaterials & Polymers

Experimental Study of Poly(1-Acetamide-3-vinylimidazolium Bromide) as a Corrosion Inhibitor for N80 Carbon Steel in HCl

Minjian Kong, Prof. Yan Meng, Dr. Lei Fan, Prof. Chengxian Yin, Prof. Qibin Chen, Prof. Honglai Liu

Pages: 5203-5210 | First Published: 01 June 2021

Corrosion behaviors of poly(1-acetamide-3-vinylimidazolium bromide) (PCVIB) towards carbon steel in HCI media were studied. PCVIB is an excellent inhibitor for carbon steel, exhibiting the maximum anticorrosive efficiency of 95.8 % at the concentration of 300 ppm at 25.0 °C. PCVIB have a greater inhibition efficiency to carbon steel due to inhibitive films formed on the metal surface confirmed by the surface analysis.

Abstract Full text PDF References Request permissions

Inorganic Chemistry

$Monoprotonated Dimethyl Sulfoxide, [HOSMe_2]^{+}: Synthesis, Crystal Structure, Spectroscopic and Theoretical Studies of [HOSMe_2]_2[OsCl_6] \cdot 2H_2O$

Dr. Olga V. Rudnitskaya, Tatiana A. Tereshina, Dr. Ekaterina V. Dobrokhotova, Dr. Ekaterina K. Kultyshkina, Dr. Alexander S. Novikov, Dr. Alexander G. Tskhovrebov, Prof. Yan V. Zubavichus, Prof. Victor N. Khrustalev

Pages: 5211-5217 | First Published: 01 June 2021

We synthesized a novel osmium complex [H(dmso]]₂[OsCl₆] · 2H₂O that contains a rare hydroxy(dimethyl)sulfonium cation, which is essentially the monomeric form of DMSO protonated at the oxygen atom. The crystal structure of the compound reveals a unique pattern of intermolecular bonding providing the very first example of protonated DMSO acting as S- and O-chalcogen bond donor simultaneously.

Abstract Full text PDF References Request permissions

ISSUE Volume 14, Issue 12 Pages: 2481-2630 June 21, 2021

Volume 3, Issue 3

ISSUE

May 2021

ISSUE Volume 2021, Issue 24 Pages: 3458-3534

June 25, 2021

ChemistryViews.org Home

Build Your Own Microscope

29 Jun 2021 Easy-to-build microscope achieves sub-micron resolution

Electrochemical Nitrogen Reduction on Mo₅N₆

29 Jun 2021 Reaction mechanisms of nitrogen fixation on molybdenum nitride studied

Jute in Nanotechnology Applications

28 Jun 2021

Sustainable source of nanocellulose, nanolignin, and nanocarbon materials

Rare-Earth Element Recovery from Coal Combustion Residue

28 Jun 2021 Recyclable ionic liquid used to extract coal fly ash

Directed C-H Hydroxylation with O₂

27 Jun 2021 Palladium complex with a bidentate pyridine-pyridone ligand as an efficient catalyst

CHEMISTRY AN ASIAN JOURNAL ISSUE Volume 16, Issue 12 Pages: 1507-1642 June 14, 2021

ISSUE Volume 10, Issue 6 Pages: 1216-1541 June 2021

Sustainable Chemistry

Decorating Flower-Like Ni(OH)₂ Microspheres on Biomass-Derived Porous Carbons for Solid-State Asymmetric Supercapacitors

Yanfang Yang, Long Li, Baxi Luosang, Menglin Shao, Dr. Xiaoqi Fu

Flower-like Ni(OH) $_2$ microspheres decorated on biomass-derived porous carbons (Ni/PC) were used as the electroactive material with an excellent specific capacitance of 1960 F g⁻¹ at 1 A g⁻¹ current density. The home-assembled Ni-0.3/PC//AC solid-state asymmetric device exhibited a high energy density of 40 Wh kg^{-1} at 800 W kg^{-1} power density with superior cycle stability.

Reviews

Catalysis

Aqueous-Phase Photocatalytic Degradation of Emerging Forever Chemical Contaminants

Prof. Dr. John N. Kuhn, Dr. Yetunde Oluwatosin Sokefun Pages: 5225-5240 | First Published: 01 June 2021

Like diamonds, some chemicals are forever. And there is no golden bullet to purified water. This review revisits basics of heterogeneous photocatalysis for organic contaminant removal in water and then focuses on emerging, organic contaminants labeled "forever chemicals" due to persistence (long halflives, ~2+ years). The selected classes of materials are (micro)-plastics, per- and polyfluoroalkyl substances (PFAs), siloxanes, and dioxanes. Additional progress is needed for removal and destruction of these contaminants.

Abstract Full text PDF References Request permissions

Full Papers

Catalysis

Free to Read

From Single Metal to Bimetallic Sites: Enhanced Higher Hydrocarbons Yield of CO₂ Hydrogenation over Bimetallic Catalysts

Yu Cui, Dr. Lisheng Guo, Weizhe Gao, Kangzhou Wang, Heng Zhao, Yingluo He, Dr. Peipei Zhang, Dr. Guohui Yang, Dr. Noritatsu Tsubaki Pages: 5241-5247 | First Published: 01 June 2021

The introduction of cobalt metal into Fe-based catalyst to form a bimetallic catalyst can obviously promote the CO2 hydrogenation catalytic performance. And the surface content and density of cobalt and iron can regulate the catalytic performance between methanation reaction and carbon chain propagation reaction.

Analytical Chemistry

Fluorometric Detection of Streptavidin with a Cationic Conjugated Polymer and Hairpin DNA Probe

Ying Yan, Tingting Hu, Dr. Xinying Xiang, Dr. Wenkai Li, Dr. Changbei Ma

ISSUE Volume 7. Issue 6 Pages: 561-681 June 2021

Pages: 5248-5253 | First Published: 01 June 2021

A new fluorescence strategy for streptavidin (SA) detection is developed based on a cationic conjugated polymer-mediated fluorescence resonance energy transfer (FRET). An efficient FRET from poly [(9,9-bis(6'-N, N, N-trimethylammonium) hexyl) fluorenylene phenylene (PFP) to SYBR Green I (SG) is achieved in the presence of SA and an amplified fluorescence signal can be detected. This method has good sensitivity and specificity for SA detection.

Materials Science inc. Nanomaterials & Polymers

Halogenation of the Side Chains in Donor-Acceptor Based Small Molecules for Photovoltaic Applications: Energetics and Charge-Transfer Properties from DFT/TDDFT Studies

Mohd Shavez, Anuj Kumar Ray, Prof. Aditya N. Panda

Pages: 5254-5265 | First Published: 01 June 2021

A computational study was conducted to understand the effect of halogen substitution at lateral side chains of small molecule donors. Starting with three experimentally prepared small molecule donors, we designed nine new halogenated molecules. In addition to examining the structural and optical properties, charge-transfer and charge-recombination rates are also calculated.

Abstract Full text PDF References Request permissions

Communications

Materials Science inc. Nanomaterials & Polymers

🔂 Open Access

Optical UV Dosimeters Based on Photoracemization of (*R*)-(+)-1,1'-Bi(2-Napthol) (BINOL) within a Chiral Nematic Liquid Crystalline Matrix

Dr. Pascal Cachelin, Dr. Hitesh Khandewal, Dr. Michael G. Debije, Prof. Ton Peijs, Prof. Cees W. M. Bastiaansen

Pages: 5266-5270 | First Published: 01 June 2021

A novel sensor involving the racemization of a chiral dopant within a nematic liquid crystalline matrix is described. The suitability of these sensors to act as personal UV dosimeters is explored. It is shown that these sensors respond to UV light with a significant change in the position of the reflection band of the chiral nematic liquid crystal, making them of interest as low-cost wearable or portable sensors for monitoring solar UV exposure.

Abstract Full text PDF References Request permissions

Catalysis

Ag@TiO2 as an Efficient Electrocatalyst for N2 Fixation to NH3 under Ambient Conditions

Xue Li, Yang Cao, Tong Xu, Yonglan Luo, Dr. Tingshuai Li, Dr. Haitao Zhao, Dr. Siyu Lu, Dr. Xifeng Shi, Prof. Abdullah M. Asiri, Prof. Jianming Hu. Oian Liu. Prof. Xuping Sun

Pages: 5271-5274 | First Published: 01 June 2021

Ag composited with TiO₂ (Ag@TiO₂) can greatly improve the N₂ reduction reaction performance of TiO₂ toward ambient conversion. In 0.1 M Na₂SO₄ (pH=7), such electrocatalyst achieves a large NH₃ yield rate of 14.88 μ g h⁻¹ mg⁻¹_{cat} with a Faradaic efficiency of 6.2% at -0.70 V vs. reversible hydrogen electrode. Besides, it also demonstrates high electrochemical and structural stability for NH₃ generation.

Abstract | Full text | PDF | References | Request permissions

Full Papers

Analytical Chemistry

A Dicyanocarbazolylstilbene-Derived Two-Photon Fluorescence Probe for Lipid Raft with a Large Two-Photon Action Cross Section

Prof. Dr. Chibao Huang, Dr. Shuai Kang, Qi Pan, Guoling Lv Pages: 5275-5280 | First Published: 01 June 2021

Because of such common features as a lipophilic long carbon chain, one fivemembered ring and three six-membered rings, and planar-rigid molecule, DLR is able to well recognize lipid rafts and image the distribution of lipid rafts in cells and tissues, and its two-photon action cross section ($\phi\delta$) is the largest among the reported two-photon fluorescence probes for lipid raft.

Abstract | Full text | PDF | References | Request permissions

Anticorrosion Inhibition Behavior of *Rhus Pentaphylla* Fruit Extracts in (1 M) HCl against Carbon Steel and their Chemical Characterization using HPLC-MS-ESI

Hajer Fadhil, Farouk Mraihi, Daoiya Zouied, Malika Trabelsi Ayadi, Jamila Kalthoum Cherif

Pages: 5281-5289 | First Published: 01 June 2021

Abstract Full text PDF References Request permissions

Phytochemical composition of Tunisian *R.pentaphylla* fruits during two maturity stages is investigated by LC-MS. Analysis highlighted the presence of 11 phenolic compounds. Corrosion inhibition efficiency of extracts was analyzed by polarization curves and electrochemical impedance. The extracts act as a mixed inhibitor and the electrochemical behavior analysis of carbon steel in HCI medium showed a maximum inhibition efficiency of 45.49 % with 100 ppm of the inhibitor. The results confirm the correlation between the phytochemical composition and corrosion inhibition capacity.

Catalysis

An Expedient Route to Diaryl Tetrahydropentalenedione Derivatives via Intramolecular Pauson- Khand Carbonylative Cycloaddition- Oxidation Protocol

Abhijit Nayak, Manas Bandyopadhyay, Dr. Deepak Chopra, Dr. Mrinal K. Bera Pages: 5290-5294 | First Published: 01 June 2021

3,6-diaryl tetrahydropentalene-1,5-dione, a new class of compounds have been accomplished via Pauson-Khand carbonylative cyclizationoxidation protocol. Operational simplicity, overall good yield and broad substrate scope make this method more appealing. Moreover, multiple functional groups present in the end product may be used as tool for creating complex molecular architecture such as triquinane skeleton.

Abstract | Full text | PDF | References | Request permissions

Inorganic Chemistry

Three Luminescent Dinuclear Copper(I) Complexes with P^N Ligands: Synthesis, Photophysical Properties, DFT Calculations and AIE Behavior

Shao-Bin Dou, Lu Xiao, Fan Li, Yi-Zheng Zhang, Xue Lu, Jian-Ming Yang, Jie Yang, Min Wu, Dr. Zhi-Gang Niu, Prof. Gao-Nan Li

Pages: 5295-5301 | First Published: 07 June 2021

In this paper, three new dinuclear copper(I) complexes (Cu1-Cu3) were synthesized, which are based on N,N-diethylaniline-bridged triazol-pyridine (BPTA) as the N N ligand and bisphosphine ligands (Xantphos, Dppp and Binap) as the P ligand. Their photophysical properties, theoretical calculations and aggregation induced emission (AIE) behavior were studied.

hostidee Full texter For Interested Interduces permission

Energy Technology & Environmental Science

🔂 Free to Read

Self-Assembled Au/TiO₂ Composite Photo-Anode Film for Highly Efficient Dye-Sensitized Solar Cells

Xiaoyan Xi, Prof. Xiangrong Ma, Ying Gong, Shiqing Bi, Prof. Hanying Wang

Pages: 5302-5306 | First Published: 07 June 2021

A composite Photo-anode of Au/TiO₂ was fabricated using facile self-assembly method. The light harvesting abilities of plasmonic DSSCs was enhanced by SPR effects. A superb overall photo-to-current conversion efficiency of 7.05 % was obtained and Au/TiO₂ based DSSC showed almost no loss of stability.

Abstract | Full text | PDF | References | Request permissions

Medicinal Chemistry & Drug Discovery

Synthesis and Molecular Docking Studies of Potent Urease Inhibitors Based on Benzoxazole Scaffold

Prof. Musa Özil, Özge Tuzcuoğlu, Dr. Nimet Baltaş, Dr. Mustafa Emirik

Pages: 5307-5312 | First Published: 07 June 2021

The series namely (2-(benzo[d]oxazol-2-ylthio)-1-(4-substitute-phenyl)ethan-1-one oxime was synthesized by the reaction of 2aminophenol with different kinds of intermediates in several steps through both conventional and microwave techniques. All compounds were found to have an excellent degree of urease inhibitory potential ranging between 0.46 \pm 0.01 and 46.10 \pm 0.45 μ M when compared with standard inhibitor acetohydroxamic acid with IC₅₀ 320.7024.24 μ M.

Abstract Full text PDF References Request permissions

Sulfonamide-β-lactam Hybrids Incorporating the Piperazine Moiety as Potential Antiinflammatory Agent with Promising Antibacterial Activity

Dr. Roghayeh Heiran, Prof. Aliasghar Jarrahpour, Dr. Elham Riazimontazer, Dr. Ahmad Gholami, Dr. Azza Troudi, Dr. Carole Digiorgio, Prof. Jean Michel Brunel, Prof. Edward Turos

Pages: 5313-5319 | First Published: 07 June 2021

Some newly sulfonamide-*β*-lactam hybrids incorporating the piperazine moiety were synthesized and their biological activities were evaluated. Two derivatives demonstrated a similar therapeutic ratio to dexamethasone. Four derivatives showed good antibacterial activity against either E. coli and S. aureus in comparison with ampicillin as a standard, and all compounds showed low cytotoxicity towards HepG2 cell line. Moreover, molecular docking analysis supported the *in vitro* results.

Abstract Full text PDF References Request permissions

Reviews

Catalysis

Triflic Anhydride (Tf₂O): An Efficient Catalyst for Electrophilic Activation of Amides

Zahra Tashrifi, Mohammad Mohammadi-Khanaposhtani, Bagher Larijani, Mohammad Mahdavi

In this review, the latest research on the electrophilic activation of amides by T_{20}^{\prime} is summarized and classified according to the the type of intermediates produced into five main categories such as: enolonium, imino/iminium, nitrilium and keteniminium ions and lsocyanate species.

Full Papers

Materials Science inc. Nanomaterials & Polymers

Activity Maintenance Characteristics and Protease Adsorption on Langmuir Monolayer of Organo-Modified Single-Walled Carbon Nanotubes

Ahmed A. Almarasy, Yuna Yamada, Yuki Mashiyama, Haruka Maruyama, Yusuke Kimura, Dr. Atsuhio Fujimori

Pages: 5329-5337 | First Published: 07 June 2021

The activity maintenance characteristics of proteases adsorbed and immobilized on a monolayer of organo-modified single-walled carbon nanotubes (SWCNTs) were evaluated in this study. Activity was expected to be maintained if the biomolecules were adsorbed at low density and their three-dimensional structure could be maintained. The protease-adsorbed organo-SWCNT multilayers were immersed in an aqueous solution of luminescent casein, and fluorescence emission was observed.

Organo-modified Carbon Nanotube

Abstract Full text PDF References Request permissions

Communications

Medicinal Chemistry & Drug Discovery

In Vitro and In Silico Anti-plasmodial Evaluation of Newly Synthesized β-Carboline Derivatives

Vipin Kumar, Cheryl Sachdeva, Kamran Waidha, Dr. Sunil Sharma, Dr. Devalina Ray, Dr. Naveen Kumar Kaushik, Dr. Biswajit Saha Pages: 5338-5342 | First Published: 07 June 2021

In this manuscript we explored the *anti*-plasmodial activity of newly synthesized β -carboline compounds conjugated with thiourea, guanidine, sulphonamide, amide and pyrimidine moiety. We successfully found two active compounds **7** and **7** c which shows IC₅₀ in micromolar range against 3D7 and INDO strain of *plasmodium falciparum*. This study will provide a great importance in future for finding lead compound against malaria.

Abstract Full text PDF References Request permissions

Full Papers

Catalysis

 $\label{eq:constraint} Evaporation-Induced Self-Assembly Method Route to TiO_2-SiO_2 Catalysts with Hierarchical Pores and Their Oximation of Ketones and Aldehydes$

Dr. Fanqing Li, Dr. Zhiwei Zhou, Dr. Juan Qin, Dr. Chuanfa Liu, Dr. Yangyang Liu, Dr. Binbin He, Dr. Guangbo Xia, Prof. Wenliang Wu Pages: 5343-5349 | First Published: 07 June 2021

The titanosilicates with higher titanium species and hierarchical pores were prepared by an evaporation-induced self-assembly (EISA) method when tetrapropylammonium hydroxide (TPAOH) and cetyltrimethylammonium bromide (CTAB) as templates, which would be resulted in the improvement of catalytic efficiency and stability than the classical TS-1 zeolite in the oximation of ketones and aldehydes owing to the acceleration for the mass transfer efficiency of substrates.

Abstract Full text PDF References Request permissions

Solvent-Free CO₂ Fixation Reaction Catalyzed by MOFs Composites Containing Polycarboxylic Acid Ligands

Yihan Tang, Wang Chen, Ruoxi Liu, Leyao Wang, Yating Pan, Ruimin Bi, Prof. Xuejun Feng, Prof. Mingyang He, Prof. Qun Chen, Prof. Zhihui Zhang

Pages: 5350-5355 | First Published: 07 June 2021

A solvent-free CO_2 fixation reaction catalyzed by copper-MOFs composites was reported, which makes yields highly up to 97 %. Theses MOFs were based on polycarboxylic acid ligands. After five catalytic cycles, the yield could remain above 90 %. Computational chemistry was applied to explain that catalytic process. After adding the catalyst, the energy barrier of the initial step of the reaction was effectively reduced.

Abstract Full text PDF References Request permissions

ZIF-8 Derived ZnO Decorated with Polydopamine and Au Nanoparticles for Efficient Photocatalytic Degradation of Rhodamine B

Zijun Zhang, Mei Li, Dr. Hua Wang

Pages: 5356-5365 | First Published: 07 June 2021

A new kind of composite photocatalysts was successfully synthesized through a sequential process of calcinating ZIF-8, assembling polydopamine (PDA) and reducing Au precursor. ZnO@PDA-Au-3 exhibited the highest degradation rate of 99 % within 24 min under UV-vis light irradiation, while ZnO@PDA and ZnO displayed degradation rate about 40 % and 16 %, respectively. Au played a crucial role in the enhancement of the photocatalytic performance.

Abstract Full text PDF References Request permissions

Organic & Supramolecular Chemistry

The Role of a Nitro Substituent in C-Phenylcalix[4] resorcinarenes to Enhance the Adsorption of Gold(III) lons

Krisfian Tata Aneka Priyangga, Yehezkiel Steven Kurniawan, Dr. Leny Yuliati

Pages: 5366-5373 | First Published: 07 June 2021

Nitro-substituted C-phenylcalix[4]resorcinarene at ortho position (Calix-2NO₂) gave a remarkable higher adsorption capacity for gold(III) ions than the non-substituted one (Calix-H). The gold(III) ions interacted with both hydroxyl and nitro groups as well as aromatic rings of C-phenylcalix[4]resorcinarene through electrostatic and cation- π interactions. Such supramolecular interactions promoted the strong adsorption of gold(III) ions on the Calix-2NO₂. Reusability test demonstrated that the Calix-2NO₂ is a potential adsorbent to be used for gold(III) ions recovery.

About Wiley Online Library

- Privacy Policy
- Terms of Use
- Cookies
- Accessibility

Help & Support Contact Us

- Training and Support
- DMCA & Reporting Piracy

Opportunities

Subscription Agents

Advertisers & Corporate Partners

Connect with Wilev

The Wiley Network Wiley Press Room

Copyright © 1999-2021 John Wiley & Sons, Inc. All rights reserved

WILEY