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Abstract—An attitude and heading reference system that 
comprises a low-cost inertial measurement unit and a 
magnetometer is often inaccurate during highly dynamic motion. 
To mitigate sensor errors, we used a well-known complementary 
filter. The basic objective in using this filter was to compensate 
for the drift in the gyro by using the accelerometer and 
magnetometer as an assistance component. This paper presents 
the design of an adaptive mechanism to adjust filter gain using a 
fuzzy logic controller. We hypothesize that dynamic acceleration 
and change in dynamic acceleration can be used as inputs for the 
controller. The controller thus produces two adaptive gains for 
use as filter gains. The experimental result shows that the 
estimated angle has a good trend until a specific time, i.e., until 
the influence of the gyro-drift causes estimated angle divergence.  

Keywords—orientation; AHRS; complementary filter; adaptive 
gain 

I.  INTRODUCTION 

We developed a shoe-type measurement device for 
measuring gait information such as step length, width, and 
pressure distribution [1-3]. The device, shown in Fig. 1, 
consists of an inertial/magnetic measurement unit (IMMU), a 
wireless module, pressure sensors, and ultrasonic 
receivers/transmitters. To improve the orientation (bank, 
elevation, and heading) and position estimation, we design a 
filter to fuse the IMMU sensor.  

Attitude and heading reference systems (AHRS) are 
typically used to determine orientation and heading. AHRS 
consists of an accelerometer, gyro, and magnetometer that 
provide a three-component inertial attitude solution without 
position and velocity. The attitude solution provided by the 
gyro is therefore prone to being unbounded, to bias, and to 
random-walk errors [4]. The accelerometer measures roll and 
pitch by leveling to correct the gyro-unbounded error. The 
magnetometer is used to correct the gyro-derived heading. The 
tool used to blend the high-frequency characteristics of the 
gyro and the low-frequency characteristics of the accelerometer 
is an estimator. The estimator’s algorithm evolved along two 
major paths: Kalman filter and complementary filter [5]. This 
paper focuses on the complementary filter for orientation 
estimation. 

The choice of an optimal filter gain value, unfortunately, 
depends on the application or the motion to which the sensor 
module is subjected. As an example, in [6], the author 

compared angular rate measurements against a threshold value 
as one of the parameters to determine the filter gain value in a 
gait application. In [7], the author used dynamic acceleration to 
determine acceleration level in unmanned aerial vehicle 
applications. 

This paper presents a method for choosing the filter gain 
adaptively by combining dynamic acceleration and the change 
in dynamic acceleration as inputs for the controller. The 
aforementioned adaptive gain is the output of the fuzzy logic 
controller (FLC) in the simulation study. Adaptive gain K1 will 
be the filter gain for the gyro component, and the second 
adaptive gain K2 will be the filter gain from the assistance 
component, which is provided by the accelerometer and 
magnetometer. The intended application is to track foot 
orientation on a shoe-type measurement device; therefore, our 
experimental data are sourced from a real pendulum-like and 
IMMU sensor.  

The rest of this paper is organized as follows: Section II 
describes the system at a glance, including the complementary 
filter and fuzzy logic mechanism in our design. Section III 
describes the experiment and simulation results. In section IV, 
we present our conclusions. 

II. SYSTEM CONFIGURATION, COMPLEMENTARY FILTER, AND 

CONTROLLER DESIGN 

A. System Configuration 

 
 

Fig. 1.  Shoe-type measurement device. 



As shown in Fig. 2, the time derivative of the Euler attitude 
is expressed in terms of the angular rate using (1) [8] 

 
1  00  / / .  (1) 

where ø, ɵ, and ψ are roll, pitch, and yaw angle, respectively. 
In the assistance component block, roll and pitch may be 

determined without knowledge of gravity using (2) and (3), 
respectively 
 arctan2 ,   (2) 

 θ arctan  (3) 

where ax, ay, and az are the acceleration components of the 
accelerometer. The magnetic heading measurement is as shown 
in (4).  arctan2 ,   (4) 

where mx, my, and mz are the magnetic field components of the 
magnetometer. 

B. Complementary Filter Design 

Ideally, the complementary filter blends sensors such that 
the total transfer function H(s) = 1, which means that no 
additional dynamics are introduced. If θ(s) is the input, the 
relationship is identical to that in [9]:  

  θ(s) H(s) = θ(s)  (5) 

If Gi(s) is the dynamic response of each component, design 
filter Fi(s) and its relation to H(s) is 

 H s ∑ 1 (6) 

A pair of filters for the gyro component (Fg(s)) and the 
assistance component (Fa(s)) 

 sFg(s) + Fa(s) = 1 (7) 

is such that the pair of first-order filters are 

 s  (8) 

 s  (9) 

Filter gains K1 and K2 are adjusted by the output of the FLC. A 
block diagram of the complementary filter and the controller is 
shown in Fig. 2.  

Fig. 3 shows our method for maintaining K1 + K2
 = 1 using an 

intuitive strategy. Each FLC output is divided by the total value 
of those controller outputs, i.e. 

  (10) 

  (11) 

C. Controller Design 

 The purpose of the controller is to calculate K1' and K2' 
based on fuzzy inference rules. The fuzzy controller block has 
two input variables, i.e., dynamic acceleration (αk) and change 
in dynamic acceleration (dαk), which is modeled in (12) and 
(13), respectively. The dynamic acceleration is the absolute of 
the norm of acceleration minus gravitation (g). 

 | g| g  (12) 

 d  (13) 

 The input variable α k has five membership functions 
decided intuitively based on experimental data from the real 
pendulum, i.e. P1, P2, P3, P4, and P5. The second input also has 
five membership function variables, i.e. NL, NS, ZE, PS, and 
PL. We also defined two outputs K1' and K2', each with five 
membership functions, i.e. NL, NS, ZE, PS, and PL. Figs. 4(a) 
and 4(b) show the fuzzy membership function for the inputs as 
well as for the output described in Figs. 5(a) and 5(b). The 
design of the fuzzy rule base outputs are shown in Tables 1 and 
2, respectively. 

III. EXPERIMENTATION 

A. Design 

As stated earlier, we designed the filter for tracking foot 
orientation so that our experimental data is sourced from a real 
pendulum-like and sensor experiment. An IMMU sensor 
consists of an accelerometer (±16 g), a gyro (±1500 deg/s), 
and a magnetometer (±0.9 Ga), these was installed adjacent 
to the electromagnetic motion tracking system receiver 
(Fastrak®) on the free-swinging pendulum.   

Fig. 3.  K1' and K2' substitution values. 
 

Fig. 2.  Block diagram of the adaptive gain complementary filter. 
 



 
 To validate the experimental result, we used Fastrak 
Polhemus® as the reference by recording the roll, pitch, and 
yaw angles of the pendulum movement. Sensor data were 
transmitted to the PC wirelessly, but the Fastrak attitude data 
were transmitted to the PC via a cable using an RS232 protocol. 
A MATLAB data acquisition program recorded data from the 
IMMU and the Fastrak on the same routine. 

We used the conventional right-handed coordinate frame, 
i.e., the thumb is the x-axis (pointed forward), the first finger 
is the y-axis (pointed right), and the second finger is the z-axis 
(pointed toward the center of the earth). In this experiment, the 
sensor movement is on the x–z plane. We focused on the pitch 
angle as the y-axis acted as the pivot of the movement. 
However, the pendulum movement was sometimes sheer, 
giving roll and yaw angles. Fig. 6 shows the experimental 
apparatus. 

B. Experimental Result 

Figs. 7, 8, and 9 compare the data of the roll, pitch, and yaw 
estimations using the Fastrak as the reference. The horizontal 
axis represents the sample number; the vertical axis indicates 
the degree of roll, pitch, or yaw. Fig. 10 shows the filter gain 
value during simulation.  

C. Discussion 

We conducted the experiments on the x–z plane; therefore, 
the dominant angle was pitch (elevation), ranging between −35 
and 35 degrees, as shown in the Fig. 8(a). The trend of the 
estimated pitch angle is similar to the reference up to 300 data 
samples. A pendulum sheer movement can also be seen on the 
x-axis, ranging from −10 to 10 degrees (Fig. 7(a)). In addition, 
the sheer movement on the z-axis caused a yaw angle ranging 
from −20 to 20 degrees, as shown in the Fig. 9(a).  

 In Fig. 7, we observe that the roll angle is well estimated up 
to 100 data samples, but the next divergence is in the range −40 
to 40 degrees; this holds true for the yaw angle as well, where 
divergence occurs with time. We surmise that our fuzzy rule 
base determination process was less than optimal; therefore, the 
filter gain was not balanced. The tendency for divergence was 
dominated by the effect of the gyro drift angle estimation. We 

TABLE I.  RULE BASE OF FILTER GAIN K1' 

 

P1 P2 P3 P4 P5 

d  

NL NL NL NS NS ZE

NS NL NS ZE ZE PS

ZE NL NS ZE ZE PS

PS NS ZE ZE PS PL

PL ZE PS PS PL PL

TABLE II.  RULE BASE OF FILTER GAIN K2' 

 

P1 P2 P3 P4 P5 

d  

NL ZE NS NS NL NL

NS PS ZE ZE NS NL

ZE PS ZE ZE NS NL

PS PL PS ZE ZE NS

PL PL PL PS PS ZE

 

 
(a) Membership function of the dynamic acceleration 

 

 
(b) Membership function of the change in dynamic acceleration 

 
Fig. 4.  Input membership function. 

 
 

Fig. 6.  Experimental apparatus and its installation.

 
(a) Membership function of filter gain K1' 

 

 
(b) Membership function of filter gain K2' 

 
Fig. 5.  Output membership function. 



can observe from Figs. 7–9 that the divergence started from 
sample 250. Fig. 10, where K1 begins to increase at sample 250, 
confirms this observation. An increase in K1 indicates that the 
primary influence to the estimator result was from the gyro-
drift.  

The next design will require improvements, especially to 
the fuzzy rule-base determination. In addition, further 
observations of the sensor outputs are necessary, particularly 
for special applications such as foot orientation tracking. A 
new parameter for the filter input must also be determined. 

IV. CONCLUSION 

We designed an adaptive-gain complementary filter using a 
fuzzy logic controller. The experiment was performed with 
dynamic movement using a pendulum-like apparatus. The 
correct orientation trend was obtained, particularly in the pitch 
angle. However, a divergence trend was observed in the 
estimated angles as the filter gain increased; the gyro-drift 
began to dominate the estimation with time. In the future, we 
will focus on evaluating the fuzzy rule-base process and 
identifying new parameters as inputs. 
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Fig. 10.  Filter gain value. 

 

 
Fig. 7.  The result of roll angle. 

 
Fig. 9.  The result of yaw angle. 

 

 
Fig. 8.  The result of pitch angle. 


