4.1. Hendrik - ARTIKEL: Photocatalytic Synthesis

Faisal Hussin and Hendrik O. Lintang and Siew Ling Lee and Leny Yuliati (2017) 4.1. Hendrik - ARTIKEL: Photocatalytic Synthesis. Journal of Photochemistry and Photobiology A: Chemistry, 340. pp. 128-135. ISSN 1010-6030

[img]
Preview
Archive (ARTIKEL: Photocatalytic Synthesis)
4.1._Hendrik_ARTIKEL_photocatalytic_synthesis.pdf - Published Version

Download (3MB) | Preview
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

A series of composites containing reduced graphene oxide and zinc oxide (rGO-ZnO) with optimum GO loading amount of 3 wt% was successfully synthesized through an in-situ photocatalytic reduction of graphene oxide (GO) over ZnO photocatalyst under UV light irradiation. Different light intensities and exposure times were confirmed to affect the properties and photocatalytic performance of the rGO-ZnO for photocatalytic degradation of phenol as an organic pollutant model. The best photocatalyst was obtained under UV light intensity of 0.4 mW cm^2 for 24 h exposure and it gave around three times higher photocatalytic performance than that of the bare ZnO. Compensating for the long exposure time, such low light intensity was crucial to generate rGO with low amount of defects. The low amount of defects resulted in low electron-hole recombination, low resistance of a charge transfer, and high electron-transfer rate constant, which in turn enhanced the photocatalytic performance. Reusability tests demonstrated the potential use of rGO-ZnO as a good photocatalyst for organic pollutant degradations.

Item Type: Article
Subjects: Q Science > QD Chemistry
Depositing User: Administrator Ma Chung
Date Deposited: 11 Nov 2017 22:58
Last Modified: 11 Nov 2017 23:49
URI: http://eprints.machung.ac.id//id/eprint/35

Actions (login required)

View Item View Item