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A B S T R A C T

A series of composites containing reduced graphene oxide and zinc oxide (rGO-ZnO) with optimum GO
loading amount of 3 wt% was successfully synthesized through an in-situ photocatalytic reduction of
graphene oxide (GO) over ZnO photocatalyst under UV light irradiation. Different light intensities and
exposure times were confirmed to affect the properties and photocatalytic performance of the rGO-ZnO
for photocatalytic degradation of phenol as an organic pollutant model. The best photocatalyst was
obtained under UV light intensity of 0.4 mW cm�2 for 24 h exposure and it gave around three times
higher photocatalytic performance than that of the bare ZnO. Compensating for the long exposure time,
such low light intensity was crucial to generate rGO with low amount of defects. The low amount of
defects resulted in low electron-hole recombination, low resistance of a charge transfer, and high
electron-transfer rate constant, which in turn enhanced the photocatalytic performance. Reusability tests
demonstrated the potential use of rGO-ZnO as a good photocatalyst for organic pollutant degradations.

© 2017 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect
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1. Introduction

Owing to the issues on the water treatment and energy
sustainability, exploration on the highly efficient photocatalysts for
treating wastewater containing harmful organic pollutants is
immensely reported worldwide. In recent decades, zinc oxide
(ZnO) has been an attractive photocatalyst [1–10] due to its
excellent and remarkable physicochemical properties, including
wide band gap (3.37 eV), chemical inertness, and strong oxidation
ability. While the photocorrosion under solar light can be
neglected [1], ZnO suffered to photocorrosion when illuminated
under UV light irradiation [2–7,11], and it has a high rate of charge
recombination, which practically hindered its applications for
numerous types of reactions. In order to suppress the drawbacks of
ZnO, many attempts were made to increase the performance of
ZnO by modifications with dopants, carbon materials, semicon-
ductor coupling, and dye sensitization [2,11–17].
* Corresponding author at: Ma Chung Research Center for Photosynthetic
Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, East Java,
Indonesia.

E-mail address: leny.yuliati@machung.ac.id (L. Yuliati).

http://dx.doi.org/10.1016/j.jphotochem.2017.03.016
1010-6030/© 2017 Elsevier B.V. All rights reserved.
One of the recent promising modifiers is graphene-based
materials. This two-dimensional (2D) material has been put to use
especially as the modifier for photocatalysts, owing to its
exceptionally unique characters, such as high electron conductivi-
ty, excellent mechanical properties, large specific surface area and
high thermal stability [18–23]. Despite of the exceptional
properties of graphene (GR), graphene oxide (GO) is more
favourable as the modifier since oxygen functional groups are
important to produce stronger interaction in the hybrid composite
photocatalysts [24,25]. However, as GO itself is an insulator, in
order to restore the electron conductivity of GO sheets, it is usually
partially reduced to reduced graphene oxide (rGO).

The rGO-ZnO composite has been commonly synthesized by
several strategies, such as microwave-assisted reaction, hydro-
thermal, solvothermal, hydrolysis methods, thermal expansion of
GO under inert atmosphere by nitrogen, surface coating and liquid
arc discharge [26–32]. Unfortunately, the implementation of heat
treatment is less favourable since it forms rGO with less crystalline
structure and more defects. Thermal expansion of GO under
nitrogen and hydrogen atmospheres at lower temperature might
overcome the less crystalline of formed rGO. However, it causes a
complete reduction of oxygen functionalities on the GO structure,
which is less desired since oxygen functionalities are crucial to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jphotochem.2017.03.016&domain=pdf
undefined
http://dx.doi.org/10.1016/j.jphotochem.2017.03.016
http://dx.doi.org/10.1016/j.jphotochem.2017.03.016
http://www.sciencedirect.com/science/journal/10106030
www.elsevier.com/locate/jphotochem
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provide interactions with ZnO. Moreover, the reduction of GO to
rGO by using toxic reducing agents such as hydrazine (N2H4)
introduced residue of reductant into the rGO suspension. On the
other hand, liquid arc discharge method can successfully create
high quality of rGO, but further purification is needed to remove
the unwanted carbon. Therefore, an alternative strategy using UV
light to assist the reduction process in the presence of suitable
photocatalyst should be adopted.

Williams et al. first demonstrated a clean and environmental-
friendly reduction method to convert GO to rGO using ZnO as
photocatalyst under UV light irradiation at room temperature [33].
This approach has some valuable advantages. For examples, this
method did not use toxic reducing agents, did not produce any
impurities and produce partially reduced oxygen functionalities on
rGO structure which are useful on providing interactions between
rGO and ZnO. This method also offered mild conditions for the
synthesis process. The photocatalytic property of the rGO-ZnO
prepared by this mild method was first reported for reduction of Cr
(VI) [34]. It was obtained that the rGO-ZnO composite gave 1.5
times higher photocatalytic activity than that of the bare ZnO since
the electron-hole recombination on ZnO was successfully sup-
pressed and the light absorption capability was improved in the
presence of the rGO.

Herein, we reported the effects of light intensity and exposure
time on the properties and performance of rGO–ZnO composites
prepared by the reduction method carried out photocatalytically
over the ZnO as the photocatalyst. Light intensity and exposure
time are considered to be crucial to prepare the rGO-ZnO
composites, which however, have never been addressed yet. The
use of strong light intensity might lead to the extensive reduction
or destruction of GO. On the other hand, the duration of the
synthesis time shall be also optimized for efficiency and avoiding
the over-reduction of the GO. Notably, we could obtain the rGO-
ZnO with much better photocatalytic performance (3.4 times) as
compared to the bare ZnO when it was synthesized using low UV
light intensity (0.4 mW cm�2) and enough irradiation time (24 h).
The superior photocatalytic performance of the composite was
strongly related to formation of defects in low amount that
promoted charge separation and improved electron charge
transfer between the rGO and the ZnO, as evidenced by Raman,
electrochemical impedance spectroscopies (EIS), and photocurrent
investigations.

2. Experimental

2.1. Synthesis of ZnO

ZnO was synthesized by a simple co-precipitation method
according to the reported literature [3] using zinc acetate
dehydrate (Zn(CH3COO)2�2H2O, 99.5%, QRëc) as the starting
precursor. Briefly, the Zn(CH3COO)2�2H2O (4.5 g) was dissolved
in deionized water (100 mL) and then sonicated for 30 min to
obtain solution A. In order to prepare solution B, sodium hydroxide
(NaOH, 99%, QRëc, 6.4 g) was dissolved in deionized water (100 mL)
and hexadecyltrimethylammonium bromide ((C16H33)N(CH3)3Br,
99%, Merck, 7.28 g) was added into the solution, followed by
stirring for 1 h to make the solution homogeneous. Subsequently,
the solution A was added slowly into the solution B and then
heated at 70 �C for 1 h. The remaining solid was filtered and washed
by deionized water and ethanol, consecutively. The as-prepared
ZnO was dried and calcined at 500 �C in air with a ramp rate of
1.0 �C min�1 and further tempered for another 1 h at this
temperature. The resulting white solid was subsequently ground
to get the ZnO powder.
2.2. Synthesis of GO

The improved Hummers’ method was adopted to synthesize GO
[35]. Graphite flakes (C, 99%, Merck, 1 g) and potassium perman-
ganate (KMnO4, 99.5%, 6 g) were added into a 500 mL of round
bottom flask, followed by addition of concentrated sulphuric acid
(H2SO4, >95%, Fisher Scientific, 135 mL) and phosphoric acid
(H3PO4, 85%, Merck, 15 mL) with ratio of 9:1. The mixture was
stirred at 50 �C for 24 h. Upon completion of reaction and cooling to
room temperature, it was poured into ice water (400 mL). The
solution was quenched with the addition of hydrogen peroxide
(H2O2, 30%, Fisher Scientific, 5 mL) in order to reduce permanga-
nate that might be remained. The solid was later collected by
centrifuging the mixture for about 10 min (4000 rpm). The solid
obtained was further washed two times with hydrochloric acid
(HCl, 30%, Fisher Scientific, 200 mL) and distilled water by
centrifugation until pH solution was near to 7, consecutively.
Upon reaching pH of 7, the solid was dispersed into methanol
(CH3OH, 99.99%, Fisher Scientific, 100 mL), followed by sonication
for 1 h. The solution was then evaporated at 40 �C and vacuum
dried overnight at room temperature.

2.3. Synthesis of rGO-ZnO

rGO-ZnO composites were prepared through a photocatalytic
reduction method using ZnO as the photocatalyst to reduce GO
[34] using different weight ratios of GO, light intensities and
duration times. The weight ratios of GO were fixed at 0.5,1, 3, 5, and
10 wt%. As a typical synthesis of 3 wt% rGO-ZnO, the ZnO (1 g) was
dispersed in methanol (CH3OH, 99.99%, Fisher Scientific, 60 mL)
and the prepared GO (0.03 g) was added to the mixture, followed
by ultrasonication for 30 min. After sonication, the mixture was
then exposed under UV light irradiation with a specific condition.
The mixture was then filtered and subsequently washed by double
distilled water and ethanol. The obtained solid was further dried at
60 �C in an oven overnight. The 3 wt% rGO-ZnO sample was labelled
as rGO(a,b)-ZnO, where a showed the light intensity of UV light
with a varying from 0.2 to 13.0 mW cm�2, while b represented the
time exposure during photocatalytic reduction with b varying from
3 to 24 h.

2.4. Characterizations

The crystal structure of the synthesized rGO-ZnO composites
was analysed by an X-ray diffractometer (XRD) using a Bruker
Advance D8 diffractometer with Cu Ka radiation (l = 1.5406 Å) at a
scan rate of 0.05 � s�1. The applied current and accelerating voltage
used were 40 mA and 40 kV, respectively. The Fourier transform
infrared (FTIR) spectra of the prepared composites were recorded
by a Thermo Scientific Nicolet iS50 using pellet technique with
potassium bromide (KBr). The stability of prepared sample and
weight content analysis of rGO was analysed with a thermogravi-
metric analyzer (TGA) using a Mettler TGA/SDTA 851e. The samples
were heated from 50 to 800 �C with a heating rate of 10 �C min�1. In
order to study the morphology of the samples, transmission
electron microscope (TEM) images were recorded on a JEOL JEM-
2100, which an accelerating voltage was set to 200 kV. The diffuse
reflectance ultraviolet-visible (DR UV–vis) spectra were investi-
gated by a Shimadzu UV-2600. Barium sulphate (BaSO4) was used
as the reflectance standard. The fluorescence spectra of samples
were measured at room temperature on a fluorescence spectro-
photometer (JASCO, FP-8500). Both of excitation and emission
bandwidths were fixed at 5 nm. Raman spectra of the prepared
samples were measured by an XploRA Plus Raman Microscope
HORIBA with the selected laser wavelength of 532 nm.



Table 1
Photocatalytic degradation of phenol over ZnO and rGO(a,b)-ZnO samples under UV
light irradiation for 6 h.

Entry Sample Phenol degradation (%)

1 ZnO 9
2 rGO (0.4,3)-ZnO 18
3 rGO (0.4,6)-ZnO 21
4 rGO (0.4,12)-ZnO 25
5 rGO (0.4,24)-ZnO 31
6 rGO (0.4,30)-ZnO 28
7 rGO (0.2,24)-ZnO 29
8 rGO (0.3,24)-ZnO 30
9 rGO (0.5,24)-ZnO 30
10 rGO (4,3)-ZnO 15
11 rGO (4,6)-ZnO 22
12 rGO (4,12)-ZnO 20
13 rGO (4,24)-ZnO 18
14 rGO (13,3)-ZnO 15
15 rGO (13,6)-ZnO 20
16 rGO (13,12)-ZnO 18
17 rGO (13,24)-ZnO 14
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2.5. Photocatalytic performances

Photocatalytic performances of the rGO-ZnO composites were
investigated for the degradation of phenol (C6H5OH, 99.5%,
Scharlau) under 6 h of UV light irradiation. Self-degradation of
phenol was also tested under UV light but without the presence of
photocatalyst. Initially, the photocatalyst sample (0.05 g) was
dispersed into a solution of phenol (50 mL, 10 ppm in acetonitrile
(C2H3N, 99.9%, Merck). The 8 W UV lamp (I = 0.4 mW cm�2) was
used for all the photocatalytic activity tests. Before light exposure,
the dark condition was performed by stirring the suspension for
30 min to achieve adsorption-desorption equilibrium between the
sample and phenol. An open system was implemented at all the
photocatalytic reactions. After reaction, remained phenol was
analysed by a Gas Chromatography (GC, Agilent Technologies
7820A) system using a flame ionization detector (FID). The
degradation of phenol was evaluated based on the percentage
ratio of degraded concentration after and prior the reaction. As for
the photostability tests, the rGO(0.4,24)-ZnO composite was
reused as the photocatalyst for three successive cycles.

2.6. Electrochemical and photoelectrochemical measurements

2.6.1. Electrode preparation
The screen-printed electrode (SPE, DS 110) was used for both

electrochemical and photoelectrochemical measurements. Silver
was invoked as the reference electrode, while carbon was used as
both the working and counter electrode. As for the electrode
preparation, deionized water (1 mL) was mixed with Nafion1117
solution (10 mL, 99%, Sigma Aldrich) and the as-obtained sample
(0.01 g) was introduced into the solution. In order to produce a
good dispersion, the mixture was ultrasonicated for about 10 min.
A small amount of the supernatant (20 mL) was dropped onto the
SPE. The SPE was then manually dried with a dryer before using it.

2.6.2. EIS measurement
EIS data were measured on a Gamry Interphase 1000. As the

electrolyte, a mixture of potassium ferricyanide (K3[Fe(CN)6],
98.5%, Sigma Aldrich, 2.5 mM) and sodium sulphate (Na2SO4,
98.5%, QRëc, 0.1 M) was prepared as aqueous solution (6 mL). For
measurements of Nyquist plots, the amplitude was fixed at 10 mV,
while the frequency range of 0.1–1 MHz. All the measurements
were conducted using the same amount of sample loading and
under the similar conditions.

2.6.3. Transient photocurrent measurement
The photocurrent data were collected using a chronoamper-

ometry. All measurements were performed under UV light
irradiation (8 W, I = 0.4 mW cm�2) using the same amount of
sample, electrode and electrolyte amounts. For photocurrent plot,
the interval for each on-off process used was 30 s.

3. Results and discussion

3.1. Photocatalytic performances

Preliminary studies were conducted in order to obtain the
optimum loading of GO for phenol degradation. Dark condition
was carried out to ensure equilibrium of adsorption-desorption
was reached. It was confirmed that no significant adsorption of
phenol could be detected for all samples, suggesting that the
introduction of GO did not improve adsorption capability of the
ZnO. As shown in Table S1, the photocatalytic activity observed for
bare ZnO after 6 h photocatalytic reaction was 9%. After modifica-
tion with GO, the activity was significantly increased up to 31%
when the GO loading reached its optimum amount at 3 wt%.
However, higher GO loading above 3 wt% led to lower photo-
catalytic activity, which might be due to the masking effect of GO.
Even though the decrease in the activity was observed, the
performance was still superior as compared to the bare ZnO. This
result clearly showed that the addition of GO indeed improved the
photocatalytic performance of ZnO. Since no degradation of phenol
can be observed without photocatalysts, it signifies that the
degradation process of phenol was mainly derived from photo-
catalytic reaction.

Further investigations on the effects of light intensity and
exposure time were carried out on the best photocatalyst, which
was the 3 wt% rGO-ZnO. The photocatalytic performance of ZnO
and rGO(a,b)-ZnO samples prepared under different light intensi-
ties (a) and exposure time (b) was tested for degradation of phenol
under UV light irradiation. The photocatalytic activities of the ZnO
and the rGO-ZnO samples are shown in Table 1. It was clearly
observed that all rGO-ZnO samples exhibited significant enhanced
photocatalytic activity when compared to the ZnO that only gave
9% degradation (Table 1, entry 1). When the light intensity of
0.4 mW cm�2 was employed (entries 2–6), the rGO(0.4,24)-ZnO
sample prepared under 24 h irradiation gave the highest activity of
31% (entry 5). This result showed that for such low light intensity,
24 h was the required time to generate the most active photo-
catalyst. Prolonging the exposure time to 30 h caused the activity
slightly dropped to 28% (entry 6). Employing exposure time of 24 h,
various low light intensities from 0.2 to 0.5 mW cm�2 were used to
synthesize the rGO-ZnO samples. The photocatalytic activities of
these samples are also listed down in Table 1 (entries 7–9). It was
obvious that the composites prepared using low light intensities
gave similar level of photocatalytic activities, which the rGO
(0.4,24)-ZnO gave slightly better activity than the others.

The correlation between the irradiation time and light
intensities was observed more clearly when the light intensities
of 4 (entries 10–13) and 13 mW cm�2 (entries 14–17) were applied.
The shorter duration time (6 h) was found to be the optimum
exposure time when using higher light intensity of 4 or 13 mW
cm�2. These results obviously indicated that both light intensity
and the light irradiation time were correlated to each other to form
active photocatalyst, as illustrated in Fig. 1. In order to clarify the
effects of light intensity and the length of the irradiation time
during synthesis process, and the role of rGO in obtaining the high
activity, the best samples for each series of rGO-ZnO composites
were selected for further characterizations.



Fig. 1. Effect of light intensity and exposure time during synthesis of rGO-ZnO
samples on the photocatalytic degradation of phenol. Light intensities used were (a)
0.4, (b) 4, and (c) 13 mW cm�2. Fig. 3. FTIR spectra of (a) GO, (b) ZnO, (c), rGO(0.4,24)-ZnO, (d) rGO(4,6)-ZnO, and

(e) rGO(13,6)-ZnO samples.
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3.2. Structure and morphology

The structural properties of GO, ZnO and rGO-ZnO samples
were studied by XRD. As displayed in Fig. 2(a), GO gave a diffraction
peak at around 9.85� owing to the presence of (001) plane having
interplanar distance of 0.90 nm. Shown in Fig. 2(b) is the XRD
pattern of ZnO that can be assigned as a wurtzite structure (JCPDS
36-1451). The dominant peak observed for ZnO sample was (101)
plane, suggesting that the preferred orientation crystal growth was
in c-axis [3]. Fig. 2(c)–(e) show the XRD patterns of rGO-ZnO
samples. All the samples exhibited the dominant diffraction peaks
of ZnO without any significant changes in the intensity, suggesting
that the addition of GO did not disturb the crystal structure of ZnO.
Absences of the rGO peaks may imply the low amount of added GO.

The functional groups of the prepared samples were further
examined by FTIR spectroscopy. As shown in Fig. 3(a), GO showed
broad peaks between 3500 and 3000 cm�1 that were assigned to
the O��H stretching modes. The peaks appeared at 1732, 1632,
1410, 1223 and 1053 cm�1 were attributed to the vibration of C¼O
stretching in carbonyl groups, C¼C in the aromatic parts, C��OH
stretching, C��O in epoxy groups, and C��O in alkoxy groups [26–
29,33–40]. The presence of all these assigned peaks confirmed the
Fig. 2. XRD patterns of (a) GO, (b) ZnO, (c), rGO(0.4,24)-ZnO, (d) rGO(4,6)-ZnO, and
(e) rGO(13,6)-ZnO samples.
successful transformation of graphite to GO. On the other hand,
ZnO gave one intense peak in the fingerprint region of 500–
400 cm�1 (Fig. 3(b)), which was corresponded to a typical peak of
Zn��O stretching mode [26,27,34]. Meanwhile, the bending mode
of water gave peak around 1630 cm�1 [4]. As illustrated in Fig. 3(c)–
(e)), all the rGO-ZnO samples exhibited similar peaks to the ZnO.
The presence of rGO peaks was hardly observed due to the low
loading amount of GO. However, this result showed that the
addition of GO did not disturb the structure of ZnO, as also
supported by the XRD patterns aforementioned.

Amount of added GO in the rGO-ZnO sample was clarified by
TGA. As shown in Fig. S1, TGA curves represented GO, ZnO, and the
rGO(0.4,24)-ZnO sample. GO showed several stages of decompo-
sition. Upon heating below 100 �C, the weight loss was mainly
associated to the adsorbed water. Two significant stage drops in
weight were observed around 226 and 541 �C. The initial stage was
belong to the decomposition of the labile oxygen-containing
functional groups, while the final stage involved the breaking bond
of C��C graphitic structure due to pyrolysis of the carbon skeleton
of GO [36–38]. On the other hand, there was no significant drop of
weight observed on ZnO sample even when the temperature
reached 800 �C, indicating that the ZnO was thermally stable. As for
the rGO(0.4,24)-ZnO sample, the total weight loss from 250 to
800 �C was determined to be around 3%. This value was pretty close
to the real amount of GO added to the ZnO as depicted in the
synthesis procedure.

Morphology of GO, ZnO and rGO(0.4,24)-ZnO composites was
investigated by TEM. As shown in Fig. 4(a), few-layered sheets
were observed on the GO, suggesting an exfoliation of oxygen
functional groups such as epoxy and enriched phenolic compounds
appeared on the basal plane [35]. ZnO showed rod-like shaped
morphology (Fig. 4(b)), in good agreement with its preferred
orientation suggested from its XRD pattern. Shown in Fig. 4(c) is
the TEM image of the rGO(0.4,24)-ZnO sample. The presence of
both rGO sheets and ZnO can be observed, where the rod shaped
ZnO was mainly retained after the photocatalytic reduction
process.

3.3. Optical properties

Optical properties of GO, ZnO and rGO(0.4,24)-ZnO composites
were studied by DR UV–vis and fluorescence spectroscopies and
shown in Fig. 5 and 6, respectively. As displayed in Fig. 5, GO



Fig. 4. TEM images of (a) GO, (b) ZnO, and (c) rGO(0.4,24)-ZnO samples. Scale bar
shows 50 nm.
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exhibited a broad peak up to visible region. The center of the peak
can be observed at 345 nm that can be originated from the C¼O
groups. ZnO showed absorption up to 400 nm with the absorption
peak was centered at 290 nm, whereas rGO(0.4,24)-ZnO sample
gave similar absorption peak to that of the ZnO, but with additional
absorption at the background level above 400 nm in a visible
region as also reported elsewhere [26,29,34]. The increasing of
background absorption in the visible region strongly suggested the
existence of rGO. However, since the photocatalytic degradation of
phenol in this study was conducted under UV light reaction only,
such improvement of background absorption would not play a
crucial role in enhancing the UV light activity. It was confirmed
that the presence of small amount of rGO did not much alter the
band structure of the ZnO.
Fig. 6 shows the emission spectra of ZnO and the rGO-ZnO
samples which were monitored at excitation wavelength of
294 nm. As previously reported elsewhere [2–4,39], ZnO could
give visible emission peaks. Two emission peaks were detected at
420 and 465 nm on the ZnO and all the rGO-ZnO samples, but the
rGO-ZnO samples exhibited less emission intensity. Less emission
intensity suggested the less electron-hole recombination on rGO-
ZnO samples [28,34]. This result demonstrated that the rGO
successfully suppressed the electron-hole recombination on the
ZnO, which would be important for achieving high activity. Among
the rGO-ZnO samples, the rGO-ZnO(0.4,24) sample exhibited
significant lowest emission intensity, in good agreement with its
highest photocatalytic activity.

3.4. Interfacial charge transfer and defect formation

As proposed above, good interaction between rGO and ZnO
caused the less electron-hole recombination. Such interaction
would not occur unless there are good interfacial charge transfers
between them. The charge resistance of ZnO, rGO(0.4,24)-ZnO, rGO
(4,6)-ZnO and rGO(13,6)-ZnO samples were studied by EIS. As
displayed in Fig. 7, Nyquist plots gave a semicircle in the high
frequency region that can be corresponded to the charge transfer
resistance (Rct). When the semicircle has a smaller arc radius, the
Rct value between the working electrode and electrolyte would be
also smaller. This would indicate better electron conductivity and
charge transfer capability [40,41]. It was clearly observed that all
the rGO-ZnO samples exhibited a smaller semicircle than that of
the ZnO, suggesting a smaller charge resistance appeared in the
rGO-ZnO samples as compared to the ZnO alone. Employing a
circuit model (constant phase element with diffusion model) and
fitting by using a simplex model program (Fig. S2), Rct values can be
obtained. As shown in Table 2, ZnO, rGO(0.4,24)-ZnO, rGO(4,6)-
ZnO and rGO(13,6)-ZnO gave Rct values of 27.90, 19.95, 20.63, and
21.76 kV, respectively. These results demonstrated the significant
role of rGO to decrease the charge resistance of ZnO. Again, the rGO
(0.4,24)-ZnO showed superior property, i.e., less charge resistance
than other rGO-ZnO samples.

Less charge resistance suggested the better charge transfer rate
and charge conductivity. Eq. (1) was employed to calculate the
heterogeneous electron-transfer rate constant (k).

k ¼ RT

n2F2ARctC0 ð1Þ

where R refers to the gas constant, T is temperature (K), n
represents the number of transferred electrons per molecule of the
redox probe, F shows the Faraday constant, A is the area of the
electrode used (cm2), Rct is the charge transfer resistance, and C0 is
the concentration of redox couples in the bulk solution [40,42].
Table 2 also shows the k values of ZnO, rGO(0.4,24)-ZnO, rGO(4,6)-
ZnO and rGO(13,6)-ZnO, which were determined to be 3.04 �10�5,
4.25 �10�5, 4.11 �10�5 and 3.89 � 10�5 cm s�1, respectively. It was
obvious that the electron transfer on the rGO-ZnO samples
occurred faster than the ZnO. Moreover, the rGO(0.4,24)-ZnO
showed the fastest electron transfer among them.

In addition to the impedance data, Warburg impedance (Wd)
can be obtained from the Nyquist plot in the low frequency region
[40,41]. Wd value reflected the ion diffusion at the interface of
electrode-electrolyte. The lower the Wd, the better the diffusion
since there was less resistance on the ions flowing at the interface.
The obtained Wd values for ZnO, rGO(0.4,24)-ZnO, rGO(4,6)-ZnO
and rGO(13,6)-ZnO were 1.83 � 10�4, 1.65 �10�4, 1.7 � 10�6 and
1.73 �10�6 (Ss1/2), respectively, as shown in Table 2. It was
demonstrated that the rGO-ZnO samples have smaller Wd value
than the bare ZnO. Meanwhile, the rGO(0.4,24)-ZnO showed



Fig. 5. DR UV–vis spectra of GO, ZnO, and rGO(0.4,24)-ZnO samples. Fig. 7. EIS investigations on (a) ZnO, (b) rGO(0.4,24)-ZnO, (c) rGO(4,6)-ZnO, and (d)
rGO(13,6)-ZnO samples.
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smaller Wd value or better diffusion than the other rGO-ZnO
samples. These results again supported that the rGO was able to
facilitate the electron transfers.

It was clear that the rGO-ZnO(0.4,24) sample gave the highest
photocatalytic activity owing to the lowest electron-hole recom-
bination, less charge transfer resistance, fastest electron transfer
rate, and fastest diffusion. Therefore, the importance of using
optimized light intensity (0.4 mW cm�2) and exposure time (24 h)
in the synthesis part shall be further clarified. Since these synthesis
parameters might affect the defect structures of the formed rGO
basal plane, a Raman spectroscopy was used to investigate them.
Displayed in Fig. 8 is the Raman spectra of graphite, GO and rGO-
ZnO samples. Graphite showed two typical characteristics bands of
graphite, which were the D and the G bands, as observed at around
1354 and 1575 cm�1, respectively (Fig. 8(a)). It has been generally
accepted that the D band is resulted from the break in the
hexagonal graphitic lattice, whereas the G band is assigned to the
in-plane stretching from symmetric sp2 C��C network carbon [43].
GO and rGO-ZnO samples showed the D and the G peaks at around
1358 and 1583 cm�1, respectively.

Defect ratio on the graphite basal plane can be determined by
comparing the intensity of D to G peak (ID/IG) as listed in Table 2. As
Fig. 6. Emission spectra of (a) ZnO, (b), rGO(0.4,24)-ZnO, (c) rGO(4,6)-ZnO, and (d)
rGO(13,6)-ZnO samples.
also shown in Fig. 8(a) and (b), graphite sample gave the ID/IG value
of 0.82, while GO sample gave the ID/IG value of 0.96, indicating that
GO was less crystalline with more defects than the graphite. This
result was reasonable since the oxidation process led to the defect
formation such as the introduction of oxygen functionalities. After
UV-assisted photoreduction process using 0.4 mW cm�2 for 24 h, it
was revealed that a certain restoration and self-healing process of
sp2 C��C bonds occurred since the ID/IG was slightly decreased to
0.94 (Fig. 8(c)). However, employing higher light intensities of 4
and 13 mW cm�2 for 6 h synthesis processes induced more defects
as evidenced with the increase of the ID/IG values from 0.94 to 0.99
and 1.00, respectively. It was suggested that under exposure of high
light intensity, the ZnO photocatalyst would also reduce some of
oxygen functionalities, creating defects on the basal plane. From
these results, it was obvious that the low light intensity was crucial
to prevent further reduction process and enough exposure time
(24 h) was required due to such low intensity. Since the formation
of defects could impede the charge transfer between rGO and ZnO,
the lower amount of defects would be one important factor that
contributed to the higher photocatalytic activity.

3.5. Photocurrent study and photostability

To provide another evidence to confirm that the rGO-ZnO gave
better interfacial charge transfer than the ZnO, transient photo-
current studies were conducted on the ZnO and the rGO(0.4,24)-
ZnO for five cycles under exposure of UV light. The measurement
was taken after 100 s for the stabilization of the electrode/
electrolyte. As depicted in Fig. 9, it can be observed that both
samples showed similar behaviour when the light was turned on
and off. When the light was turned on, the photocurrent density
increased rapidly, but it decreased fast to zero without the light.
These phenomena clearly suggested that the ZnO and the rGO
(0.4,24)-ZnO are both light-responsive materials. The higher
photocurrent density was obtained on the rGO(0.4,24)-ZnO than
the ZnO, suggesting that the rGO(0.4,24)-ZnO showed better
electron conductivity than the ZnO. Furthermore, while the rGO
(0.4,24)-ZnO showed more stable photocurrent, the ZnO gave
decayed photocurrent density after a few on-off cycles.

The photostability of the ZnO and the rGO(0.4,24)-ZnO photo-
catalyst were further investigated under the similar reaction
conditions in three consecutive reactions. The ZnO showed a
significant loss on the photocatalytic activity, where the percent-
age degradation of phenol dropped from 9 to 5 and finally 2% after



Table 2
Comparisons of charge transfer resistance, heterogeneous electron transfer rate
constant, Warburg impedance, and the intensity ratio of D to G peak.

Entry Sample Rct (kV) k (cm s�1) Wd (Ss1/2) ID/IG

1 ZnO 27.90 3.04 �10�5 1.83 � 10�4 –

2 rGO(0.4,24)-ZnO 19.95 4.25 �10�5 1.65 �10�4 0.94
3 rGO(4,6)-ZnO 20.63 4.11 �10�5 1.7 � 10�6 0.99
4 rGO(13,6)-ZnO 21.76 3.89 � 10�5 1.73 � 10�6 1.00
5 Graphite – – – 0.82
6 GO – – – 0.96

Fig. 9. Transient photocurrent responses of (a) ZnO and (b) rGO(0.4,24)-ZnO under
UV light irradiation.

134 F. Hussin et al. / Journal of Photochemistry and Photobiology A: Chemistry 340 (2017) 128–135
the third cycle. On the other hand, the rGO(0.4,24)-ZnO photo-
catalyst showed more stable photocatalytic activity of 31, 28, and
27% after three cycle experiments. As shown in Fig. S3, after three
successive cycles, ZnO showed less diffraction peak intensity,
suggesting that ZnO suffered from photocorrosion under UV light
exposure. In contrast, the rGO(0.4,24)-ZnO did not show much
changes in the intensity. Since the structure of the rGO(0.4,24)-ZnO
was remained stable after the reaction, it can be used as one
potential photocatalyst for degradation of phenol. This study
demonstrated that besides improving the photocatalytic perfor-
mance of ZnO, the rGO was also found to increase the stability of
the ZnO.

In order to evaluate the performance of rGO-ZnO in comparison
with other reported photocatalysts, the comparisons shall be made
to those carried out under similar photocatalytic reaction
conditions, such as under low light intensity and similar initial
concentration of phenol. When comparing ZnO with TiO2, ZnO
seems to give lower photocatalytic activity of 9% degradation after
6 h, while TiO2 having the mixture of anatase-rutile gave 7%
degradation in shorter reaction time of 3 h [44]. However, when
comparing the enhancement after the bare photocatalyst was
modified with rGO, the current rGO-ZnO gave larger improvement
(3.4 times) than that of the reported rGO-TiO2 (2.4 times). This
result shows that the current approach to optimize both light
intensity and exposure time is a good method to optimize the
photocatalytic activity of rGO-ZnO. Only considering the activity
improvement after addition of rGO, the current optimized rGO-
ZnO also gave better improvement than the reported rGO-carbon
nitride (2.8 times) [40]. Even though the activity of ZnO was
increased with the presence of rGO, further activity enhancement
Fig. 8. Raman spectra of (a) graphite, (b) GO, (c) rGO(0.4,24)-ZnO, (d) rGO(4,6)-ZnO,
and (e) rGO(13,6)-ZnO samples and their respective ID/IG values.
on the rGO-ZnO composite is still highly required. Since the
efficient electron transfer rate greatly affected the activity,
improving the system by using electron transfer and interfacial
mediators would be one of the best approaches to prolong the
lifetime of photogenerated charge carriers and promote the
transfer efficiency of charge carriers across the interface between
rGO and ZnO.

4. Conclusions

Contributions of light intensity and duration time in the
photocatalytic reduction of GO over ZnO to produce rGO-ZnO
composites were examined. Optimum performance of the rGO-
ZnO was achieved when using low light intensity (0.4 mW cm�2)
and enough exposure time (24 h). These conditions were proposed
to be crucial to form rGO with low amount of defects as proposed
by the Raman spectroscopy. The formation of rGO with low amount
of defect contributed in suppressing the electron-hole recombina-
tion, leading to low charge transfer resistance, fast diffusion and
high electron transfer rate on the ZnO. As the result, the rGO
(0.4,24)-ZnO sample not only gave around three times higher
photocatalytic activity, but also better photocatalytic stability than
the ZnO.
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