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We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-
dimensional PCA (GND-PCA). First, we generate 4DMRIof respiratorymotion from 2DMRIusing an intersection profilemethod.
We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragmmotion. In order
to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and
evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results
using the leave-one-out method.The results show that the first three principal components of regular PCA contain more than 98%
of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0mmmean of error for
right diaphragm motion and 3.8mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about
1mmmargin of error and is able to reconstruct the diaphragm model by fewer samples.

1. Introduction

4D-MRI is an advanced imaging technique that reconstructs
a 3D MRI with time series from a set of time sequential
images of 2D MRI. For respiratory motion, the use of 4D
MRI has an important role in many clinical applications such
as lung cancer radiotherapy planning, examining pulmonary
diseases, and analyzing diaphragmmotion. However, current
MRI is unable to acquire 4D MRI directly. Therefore, in
the recent years some methods have been proposed to
reconstruct 4D MRI of respiratory organs based on the
sequential 2DMRI [1–3].

von Siebenthal et al. [1] proposed a method to obtain
4D image using internal respiratory gating and reconstructed
it by retrospective sorting of dynamic 2D MR images.
It showed the detailed deformation of an organ during

free breathing. Tokuda also proposed an adaptive imaging
method to acquire a series of 3D MR images of respiratory
organs as the extension of respiratory gating [2]. Our previous
study successfully achieved 4D MR imaging of organs with
respiratory motion using a method called intersection profile
method [3]. In this method, we reconstructed 4D MRI of
respiratory organ from time sequential images of 2D MRI
under natural respiration.We not only successfully visualized
4DMRI of respiratory organ, but also proposed to construct
diaphragmatic function map that can be used to evaluate
diaphragm motion quantitatively. Previous related works on
4D respiratory motion modeling include [4–8].

Recent statistical model of respiratory motion was pro-
posed by Li et al. [9]. It was a statisticalmodel of lung based on
principal component analysis (PCA) and applied to clinical
data. The lung motion model, however, was based on two
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types of respiratory phantoms and cosine function which will
only be idealistic for phantom motion. Extraction and statis-
tical modeling of lung motion field were also demonstrated
in [10]. The experiment extracted motion fields from a 4D-
CT data set and built a motion model for both intra- and
intersubject. Although it focused on the lung motion, the
results showed that the use of diaphragm as a stimulator to
drive the motion model could reduce the prediction error.
Simultaneous registration of all dynamic MR images and
modeling processing were performed in [11] for the purpose
to improve the accuracy of motion estimation. However,
this approach may only be feasible for simple rigid or affine
motion model. Applying this model to organs that have
complex or nonrigid motion will significantly increase the
number of parameter and consequently execution time also
becomes much larger.

The statistical modeling was focusing on how to model
respiratory motion based on lung motion [9–11] or internal
liver motion [12]. In this paper, instead of extracting lung to
obtain respiratory motion, we focus on extracting diaphragm
motion from 4D-MRI and analyzing it using PCA. As one
of the major determinants in respiratory motion, diaphragm
has greater superior-interior translation comparedwith other
respiratory organs such as lung or liver. Thus, by modeling
and analyzing diaphragm motion, the variability of respi-
ratory motion can be clearly visualized. As mentioned in
[13], GND-PCAmethod can constructMRT1-weighted brain
volumes and CT lung volumes using fewer training samples
compared with regular PCA. Hence, we also interested to
analyze the efficacy of GND-PCA compared with regular
PCA in modeling the diaphragm motion.

To the best of our knowledge, this is the first study of
modeling and analyzing diaphragm motion extracted from
4DMRI.

2. Materials and Methods

The process of constructing and analyzing the diaphragm
motion model consists of four parts. The first is diaphragm
segmentation and motion tracking. We will briefly review
the methodology we used to create 3D model of diaphragm
shape. Second is data normalization. We will cover how to
normalize the data obtained from the previous step.This step
is primarily important to generalize the data from different
subjects.Third is model analysis using PCA and GND-PCA.
Basic theory of PCA and GND-PCAwill be described. Last is
data evaluation, in which we will explain how to validate the
constructed model.

2.1. 3! Diaphragm Segmentation and Motion Tracking.
Right-handed Cartesian coordinate system is used to cover
the whole diaphragm area. A number of MRI data slices, size
of 256 × 256 pixels in coronal view are set along the #-axis
(Figure 1(a)). Each data slice position is denoted by #! where$ = 1, . . . , %. To assess the diaphragm motion, we also use &
time-sequential images for each data slice of #!. We denote
one data slice as 'data((,#!, ), *), where * = 1, 2, . . . ,&. A
first shape of diaphragm is obtained from 'data((,#!, ), *) for

$ = 1, 2, . . . , % and * = 1.The diaphragm shape is determined
as follows. Several points are selected in each data slice (#!)
that represents diaphragm boundary shown as white dots
in Figure 1(a). The number of points varies from 10 to 15
depending on the curve of diaphragm boundary. Generally,
more points are required if the diaphragm boundary has a
rounded or curvature shape.The points are then connected by
spline interpolation. By conducting this operation for all #!,
the area of diaphragm in (# plane is defined as shown in
Figure 1(b). We denote this shape as Ω. Note that we ignore
the area below the heart because it is strongly affected by
heart beat and apart from respiratory motion. The entry
of this matrix represents ) value of diaphragm surface at((,#).The 3D representation of diaphragm surface is shown
in Figure 1(c). In this step, % × 256 matrix for one whole
diaphragm area is generated, where % is the number of slice.
Depending on the acquisition process, % will vary between 16
and 24.

Once the 3D shape on diaphragm area Ω is obtained for* = 1 (as shown in Figure 1(b)), the 3D shape of diaphragm
over the area of Ω is tracked in the next frame. In order
to do so, a profile of 'data((,#!, ), *) along , at position((,#) over Ω is compared with a profile of 'data((,#!, ), * −1) at the same position ((,#!), and is found a value of
displacement of diaphragm along )-axis by using normalized
cross-correlation.

Figure 2 summarizes the flow diagram of diaphragm
motion tracking method. Complete reference regarding this
motion tracking method can be found in [3].

2.2. Data Normalization. The acquisition of diaphragm
motion based on the previously explained method cannot
be generalized for all diaphragms due to the wide range of
variability of diaphragm shape and size among the subjects.
Hence, the acquired data need to be normalized.The normal-
ization process takes four steps.

First, we divide the diaphragm area into two parts: right
and left diaphragm areas.

Second, to represent a detailed and unique diaphragm
region, we calculate gradient edges of all diaphragm shapes
and choose one that has the highest gradient edges as
reference image. Affine registration is then performed for all
diaphragm shapes to ensure the same location and size of all
diaphragm shape before the analysis is performed.

Third, for each diaphragm area, we set the top left and
bottom right coordinate to limit the diaphragm area into a
rectangular shape.The distance of new top left position is 1/10
of the diaphragm area width and so is the new bottom right
position. Figure 2 shows how to set new region of diaphragm
area. Selecting the region of diaphragm area ensures that
the analysis is only done in the main part of the diaphragm
area and ignores the area that has small movement.This also
maintains the correspondence on different subjects since the
top and bottom areas will constantly represent same anterior
and posterior positions of all subjects.

The last step of normalization process consists of two
parts, temporal and spatial normalization. Temporal nor-
malization makes all subjects have the same number of
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Figure 1: Coordinate definition of 4DMRI and diaphragm extraction. (a) Manually selected several points (white dots) of one data slice to
extract diaphragm surface, (b) complete extraction of diaphragm surface from #1 to #20, and (c) representation of diaphragm area.
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Figure 2: Flow diagram of diaphragm motion tracking method.

frames, while spatial normalization only normalizes the size
of diaphragm area.

Let ,((,#, *) denotes the ) value of diaphragm surface
(or target image) at ((,#) position and *th frame (1, 2, . . . ,&).
After temporal normalization, ,((,#, *) can be denoted as,((,#, *∗ ), where *∗ ranges from 1 to 20. The following
operator is used to define *∗ :*∗ = ⌊20 − 1& − 1 (* − 1) + 1⌋ . (1)

Here the operator ⌊ ⌋ represents ceiling function which
returns a decimal number to its smallest integer.

Due to the fact that the coordinate position and the size
of rectangular area shown in Figure 3(b) vary among the
subjects, the last part in the normalization process is to fix
the rectangular area for both# and ( axes.The purpose is that

all the data will have the same size and position. The size of
the reference image is represented by2ref ⋅4ref. In our study,
we used 60 × 100 pixels for2ref ⋅ 4ref. Actual normalization
process is described as follows.

(1) Normalization of #-Axis. To normalize the diaphragm
area into 5 axis, the origin image is scaled and fixed
to the reference image.The following operator is used
to scale diaphragm area in #-axis,,# ((,#, *) = ,((, ⌈4target4ref #⌉ , *∗ ) , (2)

where 4target is height of the image target and 4ref
is the height of the reference image. Operator ⌈(⌉
represents ceiling function which rounds up the
decimals into an integer.This scaling process is done
for all ( and #.The results of #-axis normalization is
called intermediate image.

(2) Normalization of (-Axis. The width of the reference
image is also fixed by horizontal scaling.The operator
used to scale diaphragm area in (-axis is written as,## ((,#, *)= ,# (⌈2target (@) −2target (1)2ref ( +2target (1)⌉ ,#, *∗ ) ,

(3)

where 2target(@) and 2target(1) are the last and first
nonzero positions in the current#-axis and2ref is the
width of the reference image. This horizontal scaling
is done for all (, #.The result of (-axis normalization
is a final image with the same width and height of the
reference image.

Since there are both right and left diaphragm areas,
scaling the area using the reference image is done for both
diaphragm areas.This process is repeated for each data frame
obtained from the previous algorithm starting from the first
time-sequential image to the last one (*∗ = 1 ⋅ ⋅ ⋅ 20).
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Figure 3: Set the top left and bottom right coordinate to limit the diaphragm area.

The matrix dimension of diaphragm motion after nor-
malization is 2ref × 4ref × 20 or equals to 60 × 100 ×20 (spatial size of reference image ×20 frames) for each
side of diaphragm. To ensure that the diaphragm motion is
represented as a whole diaphragm and keeping the shape
variance, we merge the right and left sides of diaphragm into
a matrix. The final matrix dimension after the merging is60 × 200 × 20. Considering the data as high-dimensional
data, linear statistical analysis is possible to be carried out
by applying principal component analysis (PCA). It reduces
the data set and reveals the hidden pattern as maintaining the
majority of the variation in the original data.

The upper part of Figure 3 shows the spatial normaliza-
tion process of certain frame. After modeling using PCA, we
reverse the image into the original diaphragm shape. Firstly,
we create a mask based on the original diaphragm shape.
Using this mask, the modeled image is then resized and
reshaped to the original diaphragm shape.The bottom part of
Figure 3 shows the reversing process from a frame modeled
by PCA to a diaphragm shape image.

2.3. PCA and GND-PCA Diaphragm Motion Model. Gen-
erally, PCA is a statistical method to transform a set of
correlated variables into a smaller number of uncorrelated
variables or principal components (PCs).The PCs are sorted
in a descending order of importance.The purpose of PCA is
that the first few PCs are able to explain large proportion of
the variation in the original variables, and only those PCs are
retained for further analysis.

The following paragraphs describe how PCA is used to
analyze diaphragm motion. Let z be a vector of ) value
of the spatiotemporally normalized for both right and left
diaphragm. Vector z can be expressed as 1D array:

z = [)1, )2, )3, . . . , )$]%, (4)

where )! = , ((,#, *) (5)

and $ is the index obtained by the following equation:$ = (* − 1)4ref2ref + (# − 1)4ref + (. (6)

For C subjects, we denote z(&) (D = 1, 2, 3, . . . ,C) as a
diaphragm motion data set from Dth subject.

Principal components are the eigenvectors with its corre-
sponding eigenvalues of covariance matrix of z. The sorted
eigenvectors by decreasing order of its corresponding eigen-
values is the most optimal with respect to information loss.

Another method to build a statistical method is GND-
PCA. It is a method to model a series of multidimensional
array proposed by McQuaid et al. [14]. Instead of using one
long vector to represent a motion model, GND-PCA uses
a tensor to represent a shape or motion model. The tensor
itself is a multidimensional array whose order is the number
of dimensions, also known as ways or modes. We will give
a brief explanation of GND-PCA. More details about GND-
PCA can be read in [14].

An Eth-order tensor, denoted by A, where A ∈G'1×'2×'3×⋅⋅⋅×'! and G* denotes the set of all vectors with @ real
components. In tensor point of view, a vector and a matrix
are a tensor of order one and order two, respectively. One
diaphragm motion can be considered as third-order tensor
M, where M ∈ G'1×'2×'3 (H1 × H2 is the spatial dimension of
the diaphragm in each frame and H3 is the number of frame).

Here, let M! ($ = 1, 2, 3, . . . ,C) denote C samples of
third-order tensor that represents diaphragm motion fromC subjects. A series of lower rank tensors M∗! ∈ G+1×+2×+3
is defined as the most accurate approximation of original
tensors M!, where I1 < H1, I2 < H2 and I3 < H3. To obtain
M∗! , we decompose the tensors into smaller core tensors, and
their corresponding orthogonalmodematrices are shown by:

M∗! = C! × 1Y× 2X× 3T . (7)

The product *X denotes the @-mode product between
the tensor and the mode matrices [14]. Figure 4 shows the
illustration of 3rd-order tensor decomposition of diaphragm
motion model.
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Figure 4: Diagram of spatial normalization and its reconstruction process to obtain diaphragm original shape.

The orthogonal mode matrices capture the variation
along the spatial (Y ∈ G'1×+1 and X ∈ G'2×+2 ) and time (T ∈G'3×+3 ) dimension. The core tensors (C! ∈ G+1×+2×+3 ) control
the interaction betweenmodematrices and can be seen as the
compressed version of the original tensor.Themodematrices
can be obtained by solving the following equation:

min JJJJM! −M∗! JJJJ = min JJJJM! −C! × 1Y× 2X× 3TJJJJ . (8)

2.4. Evaluation Methods. In this study, we evaluate the
performance of the diaphragm motion model by calculating
the mean and maximum errors of the constructed model.
Leave-one-out method is used for this evaluation [15].

The error of approximated model from each subject can
be obtained by simply subtracting each of the elements of
constructed model from the original shape and getting the
absolute value. The error of right and left diaphragm shapes
of Dth subject can be mathematically written asK(&) ((,#, *) = LLLLL)̂& ((,#, *) − )(&) ((,#, *)LLLLL . (9)

Here, we redefined the shape of normalized diaphragm by)(&)((,#, *). We also represent the estimate by the statistical
model by )̂(&)((,#, *).

Based on this definition of error, some kinds of mean or
maximum error can be expressed. For instance, mean error
of each subject is given byK(&)mean = 1@(&)& %∑,=1 ∑-,.∈Ω(")K(&)1 ((,#, *) , (10)

where @(&) is the number of nonzero values in the diaphragm
areaΩ(&) of Dth subject. Intersubject average of K(&)1,mean is given
by: Kmean = 1C 2∑&=1K(&)mean. (11)

The maximum error for Dth subject is given byK(&)max = max (K(&) ((,#, *)) . (12)

We can also calculate the intersubject average of maximum
error by Kmax = 1C 2∑&=1K(&)max. (13)

Another evaluation method we used is frame-by-frame
error calculation. Frame-by-frame error is important to
analyze which respiratory phase gives the largest or smallest
error. Frame-by-frame mean error of each subject is given byK(&) (*) = 1@(&)∑-,.K(&) ((,#, *) . (14)

Intersubject average of frame-by-frame error is given byK (*) = 1C 2∑&=1K(&) (*) . (15)

3. Experimental Results

Ten healthy subjects within the age ranging from 23 to 46
participated in this study. For diaphragmmotion studies, MR
images are particularly preferred than CT images since MR
images provide high soft tissue contrast to produce detailed
respiratory organs. The high contrast of MR images will be
useful during themanual diaphragm boundary segmentation
process.

In this study, MR Images were acquired using 1.5T
INTERA ACHIVA nova-dual (Philips Medical Systems)
whole-body scanner with a 16ch SENSE TORSO XL Coil. A
2Dbalanced FFE sequencewas used.The imaging parameters
are as follows: SENSE factor: 2.2, flip angle: 45∘, TR: 2.2ms,
TE: 0.9ms, FOV: 384mm, in-plane resolution 256 × 256
pixels and 1.5 × 1.5mm2, slice thickness: 7.5mm, slice gap
= 6.0mm, and scan time: 150ms/frame and 400 frame/slice.
Normal breathing was instructed for all subjects during the
acquisition process. This image acquisition experiment was
conducted under an approval of Ethical Review Board of
Chiba University.

The software used for PCA is MATLAB 7.10 and running
on PC with Intel Core 2 Quad, 2.66GHz, 16GB RAM.
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Table 1: Percent variations and cumulative contribution up to three
principal components of 10 healthy subjects.

PC % Cum. %
1 97.4 97.4
2 1.1 98.5
3 0.7 99.2

Frame

Core tensor

0

1
≈ℳ∗$3 $3$1 $1$2

$283 8381 81 82
82

9

Figure 5: Decomposition of 3rd-order tensor into one core tensor
and three mode matrices.

3.1. PCA and GND-PCA Model Output. The contribution
ratio and cumulative up to three principal components of
right and left diaphragm motion are listed in Table 1. The
percentage of variance of first principal component is 97.4%
and 99.2% for the first three principal components.

Mapping the error of ) coordinates in the constructed
model using different number of PCswill be useful for further
analysis. Figures 5 and 6 illustrate color mapping of the error
in the first frame of the first subject given byK(1) ((,#, 1) = )̂(1) ((,#, 1) − )(1) ((,#, 1) . (16)

Note that the error is not an absolute value as expressed in
(9).

The white area represents the exact approximation, red
and blue areas indicate that estimated ) coordinates are
higher and lower than the actual position, respectively.

Figure 6 is the case when first one, first two, and first
three PCs are used in regular PCA, respectively. As shown
in Figure 6(c), the red and blue areas are decreasing. This
indicates that the model well approximated the actual shape
when the first three PCs were used.

The similar results are also shown by GND-PCA con-
struction as illustrated in Figure 7.The error color mappings
were obtained by reconstructing the model with 4 × 2 × 1,8× 4× 2, 16× 8× 4, 32× 16× 8, and 64× 32× 16 core tensors
respectively and subtracting them from the original shape of
diaphragm. The last three core tensors showed that the red
and blue colors on the diaphragm area almost disappeared,
which means the constructed models are very similar to the
original shape.

In term of number of coefficients required to con-
struct the model, regular PCA outperformed the GND-PCA.
Table 2 shows the comparison of the number of coefficients

Table 2: Comparison of the number of coefficients required to
construct diaphragm motion model.

Regular PCA GND-PCA
PC Coef. Core tensor Coef.
First PC 1 4 × 2 × 1 8
First two PCs 2 8 × 4 × 2 64
First three PCs 3 16 × 8 × 4 512

required to construct diaphragm motion model between
regular PCA and GND-PCA.

3.2. Leave-One-Out Method Validation. We omitted one
subject as a testing subject and constructed the diaphragm
motion model using training data from the remaining nine
subjects. This model was then applied to the testing subject.
The mean error of the testing subject was calculated using
(10).The whole procedure is repeated till each of ten subjects
has become testing subject once.

Figure 8(a) shows the mean error of each subject in case
ofmodel using regular PCA andGND-PCA, respectively. For
regular PCA model, the mean error ranges are 3.8–13.4mm
for first PC, 3.6–10.2mm for first two PCs, and 3.5–10.6mm
for first three PCs. Althoughmore than 98% variability of the
diaphragm motion can be covered by the first three PCs as
shown in Table 1, the validation using leave-one-out method
showed that intersubjecting the average of mean error of the
model given by (11) is more than 4mm.

Contrary to the regular PCA, the error mean of model
by GND-PCA as shown in Figure 8(b) is much smaller. The
mean error ranges are 1.4–9.0mm for 4 × 2 × 1 core tensor,
1.4–4.0mm for 8× 4× 2 core tensor, and 0.8–2.1mm for 16 ×8 × 4 core tensor.

Figure 9 showed frame-by-frame mean error K(*) of the
model by regular PCA. As shown in this figure, 18–20th
frames indicate low mean error (about 3.9mm on average)
and 9–11th frames indicate high mean error (about 9.0mm
on average). It is probably caused by the smaller variability in
the 18–20th frames and higher variability in 9–12th frames.

Different results were obtained using GND-PCA as
shown in Figure 10. Since GND-PCA can capture both spatial
and time variability; there were no large differences of mean
error among the frames. For instance, the standard deviation
of mean error from 16 × 8 × 4 core tensors is 0.37mm, while
for three principal components of regular PCA the mean
error is 2.2mm.

Tables 2 and 3 summarize the average of mean error Kmean
and average of maximum error Kmax. The results of GND-
PCA showed consistent reconstruction with smaller error
compared with the model constructed using regular PCA.

4. Discussion

In this paper, we described how to build a statistical model
of diaphragmmotion using PCA and GND-PCA.The model
was obtained from 4D MRI that reconstructed from time
sequential images of thoracic 2DMRI of ten healthy subjects.
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Figure 6: Regular PCA Error position mapping of one frame using (a) first PC, (b) first two PCs, and (c) first three PCs.

(a) (b) (c) (d)+10 mm

−10 mm
(e)

Figure 7: GND-PCA error position mapping of one frame using (a) 4× 2× 1, (b) 8× 4× 2, (c) 16× 8× 4, (d) 32× 16× 8, and (e) 64× 32× 16,
core tensors.

Table 3: Leave-one-outmethod validation using regular PCA:mean
and average of maximum error position (in mm).

Used PC Regular PCA GND-PCA
Mean Max Mean Max

1st PC 9.2 15.7 5.5 13.5
1st + 2nd PCs 6.5 17.3 2.4 8.1
1st–3rd PCs 6.3 17.2 1.3 5.5

The modeling process involves manual segmentation of
diaphragm boundary, automatic motion tracking based on
the intersection profile method [3], constructing region of
interest for right and left areas of diaphragm, and normaliza-
tion of diaphragm shape.

The developed model using regular PCA can accurately
describe more than 98% of the total variation by including
the first three PCs.This indicates that most of the diaphragm
motion variability is adequately described using a few num-
ber of parameters. Consequently, the description andmotion
of the diaphragm are greatly simplified by this model.

Leave-one-out validation was employed to evaluate the
performance of the model. As shown in Table 2, the results
of regular PCA illustrated that mean error position of both
sides of diaphragmwasmore than 6.0mm, which considered
as significant error.

To build a better statistical modeling, we applied GND-
PCA [14]. Differing from regular PCA, GND-PCA is not
necessarily unfolding the diaphragm motion model into
one long vector. Instead, it decomposes the model into a
core tensor and several mode matrices for dimensionality
reduction. The mode matrices can represent the principal
axes of variation. Several numbers of core tensors are chosen

to construct the motion model. The smallest size of core
tensor is 4×2×1which is able to construct themotionmodel
under leave-one-out validation with mean error of 5.5mm.
Among the three sizes of core tensor (4 × 2 × 1, 8 × 4 × 2,
and 16 × 8 × 4); the best model construction is achieved
by 16 × 8 × 4 core tensor which gives mean error of 1.3mm.
The maximum error is also significantly reduced to 5.6mm.
Compared with regular PCA using first three PCs, the results
of GND-PCA showed significant improvement to themotion
model. Mean error obtained from frame-by-frame analysis
shown in Figure 10 also confirmed that GND-PCA is able
to capture the motion variability of the diaphragm. One of
the major drawbacks of GND-PCA is that it requires more
coefficients to construct the model compared with regular
PCA.

There are some considerations regarding the diaphragm
motion model in this study. The first is the resolution of
MR images used in this study limits the motion model for
being used in the clinical application such as radiotherapy
planning. At this stage, our main focus is to demonstrate that
GND-PCA can model the diaphragm motion with smaller
number of sample data compared with regular PCA. The
model cannot be applied for the clinical application due to
the lowMR image resolution. Higher resolution ofMR image
is required if one needs to apply the model for a clinical
application.

Second is about shape modeling approach. In this study,
we used simple spatial and temporal normalization.Although
this simple normalization is sufficient to show the efficacy
of GND-PCA compared with regular PCA, the use of other
spatial normalization techniques such as active point dis-
tribution model [16] or nonrigid registration [17] such as
thin-plate splines or cubic B-splines will provide a better
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Figure 8:The mean error of the model by (a) regular PCA from and (b) GND-PCA.The measurement unit is in mm.
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Figure 9: Regular PCA mean of error frame-by-frame.
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diaphragm motion modeling. We will consider this issue in
our future works.

Other consideration is that the manual segmentation
of diaphragm area can affect the final results. Manual seg-
mentation of diaphragm boundary is very subjective to the
experience of the user.Hence, the variability of the diaphragm
motionmay changewhen the diaphragmarea is resegmented.
An automatic statistical shape model of diaphragm area from

thoracic 2DMRI is needed to be developed for further work.
Although the proposedmethod in [15] can be used to develop
a statistical shape model of diaphragm, it is suited only for
respiratory-gated CT data sets. Several adjustments need to
be done to apply the method to thoracic 2DMRI.

5. Conclusion

We have developed a statistical method to model diaphragm
motion using PCA. Time-sequential 2D MRI was con-
structed from a 4D MRI and extracted to obtain a 3D
diaphragmmotionmodel. Regular PCA andGND-PCAwere
then applied to construct model. In the experiment, we
investigated that three eigenvectors or PCs with the largest
eigenvalues are sufficient to accurately describe diaphragm
motion model from ten healthy subjects. Model validation
using leave-one-out showed that GND-PCA gives more
stable reconstruction compared with regular PCA. This
concludes that GND-PCA can model the motion better
with a small number of sample data. Further works to be
done include automatic segmentation of diaphragm area and
investigation of compactness, generality, and specificity of the
model.
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