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Abstract. Determination of photosynthetic pigments in intact leaves is an essential step in the plant analysis. Along with the rapid
development of digital imaging technology and artificial intelligence, now determination of plant pigments can be done in a non-
destructive and real-time manner. In previous research, a prototype of the non-destructive and real-time system has been developed
by utilizing the Convolutional Neural Network (CNN) model to produce predictions of three main photosynthetic pigments, i.e.,
chlorophyll, carotenoid, and anthocyanin. The CNN model was chosen due to its ability to handle raw digital image data without
prior feature extraction. In the near future, this ability will be useful for developing analytical portable devices. Input of the system is
multispectral plant digital image, and the output are predicted pigment concentration. Convolutional Neural Network performance
depends on several factors, among them are data quality, algorithm tuning (weight initialization, learning rate, activation function,
network topology, batches and epochs, optimization and loss) and models combination. The focus of this research is to improve
the accuracy of CNN model by optimizing the selection for updating CNN architecture parameters which are optimization method
and the loss function. As it is already known, there is no single optimizer can outperform for all cases. The selection for the
optimizer should be made by considering the variability of the data and the nonlinearity level of the relationship patterns that
exist in the data. Because the theoretical calculation is not enough to determine the best optimizer, an experiment is needed to
see at firsthand the performance of optimizers that allegedly matches the characteristics of the data being analyzed. Gradient
descent optimization method is well known for its ease of computing and speed of convergence on large datasets. Here, 7 gradient
descent-based optimizers were compared, i.e., Stochastic Gradient Descent (SGD), Adaptive Gradient (Adagrad), Adaptive Delta
(Adadelta), Root Mean Square Propagation (RMSProp), Adaptive Momentum (Adam), Adaptive Max Pooling (Adamax), and
Nesterov Adaptive Momentum (Nadam). From the eksperiment result it is known that Adam is the best optimizer to improve LeNet
ability in handling a digital image-pigments content relationship. However, when the resources for experimentation is limited, using
Adadelta and Adamax is a wise choice to minimize risk.

INTRODUCTION

Convolutional Neural Network is the development of Artificial Neural Network (ANN) models which was initially
designed to be able to handle input data in the form of digital images. Unlike ANN models which require the efforts of
researchers to determine features of the digital image that are most suitable to be used as an input, the CNN models are
designed to be able to find these features automatically. The CNN architecture was first introduced by Fukushima [1]
and improved by LeCun [2]. However, CNN did not gain proper attention until the success of the AlexNet architecture
in 2012 [3]. AlexNet produces up to 15.3% error rates when classifying ImageNet and won the LSVRC (Large Scale
Visual Recognition Challenge) competition. This achievement became the starting point of the development of other
CNN models. Nowadays, CNN experienced very rapid development in the various field, e.g., computer vision (face
recognition, scene labeling, image classification, action recognition, human pose estimation) document analysis) and
natural language processing (speech recognition, text classification) [4].

Optimization algorithm in CNN architectures was first introduced by LeCun with gradient-based technique. It
is obtained a good result for the handwritten digit classification problem [2]. In the following years, gradient-based
methods are very popular to use because of the ease of implementation. However, since vanishing gradient problem
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was known may prevent the neural network from further training, many researchers develop the variant of the gradient-
based algorithm. The new variant usually comes with an idea to correct the weaknesses of the previous methods. On
the other hand, prior experiences show that there is no single optimization method has the best performance in all cases.
Therefore, careful analysis is needed to get the right combination of CNN architecture and optimization algorithm to
produce the best result.

By utilizing the ability of CNN to process plant digital images as the raw data, we have developed a non-
destructive photosynthetic pigments prediction. It has been shown that CNN can be used to predict photosynthetic
pigments content in a plant leaf [5]. A multispectral digital image which was consist of 10 channels was used as
the input. Three CNN architectures, i.e., ShallowNet, LeNet and AlexNet were compared through 108 experiments.
The LeNet architecture was proven slightly superior compared to the other two architectures. Hence, in this research,
an analysis of the best optimization method to improve the previous result was conducted. Seven gradient descent-
based method were implemented into previous CNN architectures and Mean Square Error (MSE) was used as the
performance indicator.

GRADIENT DESCENT OPTIMIZATION

Gradient descent is a well-known technique for finding a local minimum value of a function. In CNN and other neural
network-based algorithms, gradient descent is used to minimize the error function during the training process and
then updating the internal parameters. In general, an optimization technique is categorized as first-order optimization
algorithm and second-order optimization algorithm. Gradient descent belongs to the first order optimization algorithm
class. The first order derivative provides information about the direction of the error function at a specific point,
whether it is increasing or decreasing. The information is used to guide the error function to move downward until
reaching the local minimum [6]. Batch gradient descent is the standard technique that is proved to be inefficient. In
order to produce one update for the internal parameters, it computes the gradient of the entire training data (which is
usually very large). It makes the updating process run very slow. With the aim of overcoming the weaknesses of such
standard method, several algorithms were developed as follow:

1. Stochastic Gradient Descent (SGD). The modification is made to the amount of the data being used to update
the internal parameters (θ). Rather than includes the entire training data, SGD uses a subset of training data
(x(i); y(i)) gradually. It calculates one parameters update based on one small subset of the training data. It will
re-computes the gradients for other subsets and perform next parameter update. Each subset i is chosen ran-
domly. Therefore SGD usually runs faster and could perform online learning. Parameters update at time t + 1
is computed using equation (1), η is the learning rate and J is the error function [7]. The frequent updates in
SGD can provide the possibility to discover new and better local minima. However, the impact of the frequent
updates is the difficulty in acquiring convergence.

θt+1 = θt − η. 5θ J(θ; x(i); y(i)) (1)

2. Adaptive Gradient (Adagrad). Stochastic Gradient Descent uses the same learning rate (η) for all parame-
ters updates. Adagrad modifies this process by allowing the learning rate to be changeable at each time step
regarding the importance of the parameters being update. Significant updates were performed for the infrequent
parameters, whereas small updates were performed for the frequent parameters. This mechanism will allow
each parameter to discover its optimal value independently and gain the increase of overall accuracy. Parame-
ters update is compute using equation (2), gt is the gradient of the parameters on the error function at a time t
and Gt is the diagonal element of the Σt

τ=1gτ.gT
τ matrix. Each diagonal element represents the sum of squares of

each parameters gradient up to time step [8].

θt+1 = θt −
η

√
Gt + ε

.gt (2)

3. Adaptive Delta (Adadelta). Adadelta modifies the Adagrad formula to reduce its monotonically decreasing
learning rate. In Adagrad, the squared gradients from each epoch were accumulated, therefore the denominator
value grows with the training process such that the learning rate on each dimension is shrinking. The idea of
Adadelta to overcome such problem is accumulating only the last w squared gradients [9]. For efficiency reason,
those accumulation is implemented as a decaying running average of the squared gradients as equation (3) with
β is decay constant. The parameter update at time step t + 1 is computed using equation (4) and (5).
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RMS [g]t = E[g2]t = β.E[g2]t+1 + (1 − β).g2
t (3)

∆θt = −
RMS |∆θ|t+1

RMS |g|t
.gt (4)

θt+1 = θt + ∆θt (5)

4. Root Mean Square Propagation (RMSProp) RMSProp was developed to resolve the Adagrad problem, just
like Adadelta does. It divides the learning rate by an a running average of squared gradients (E[g2]t) which is
exponentially decaying [10]. The parameter update at time step t + 1 is computed using equation (6) dan (7).

E[g2]t = 0.9E[g2]t+1 + 0.1g2
t (6)

θt+1 = θt −
η√

E[g2]t + ε
.gt (7)

5. Adaptive Momentum (Adam) Adam computes adaptive learning rates for each parameter. Just like Adadelta
and RMSProp, Adam store squared gradients from the bias-corrected past epoch (v̂t). As an addition, Adam also
stores the bias-corrected past average gradient (m̂t). Both values (vt and mt) estimate the decaying first moment
and the second moment of the gradients as computed by equation (8)-(11), β is the decay constant [11]. The
parameter update at time step t + 1 is computed using equation [12].

mt = β1.mt−1 + (1 − β1).gt (8)

m̂t = mt/(1 − βt
1) (9)

vt = β2.vt−1 + (1 − β2).gt (10)

v̂t = vt/(1 − βt
2) (11)

θt+1 = θt −
η

√
v̂t t + ε

.m̂t (12)

6. Adaptive Max Pooling (Adamax) Adamax is a development of Adam. The modification is in the use of infinity
norm (ut). It was shown that vt value in Adam with `∞ will converges to more stable value [11]. The parameter
update at time step t + 1 is then computed using equation (13) and (14).

θt+1 = θt −
η

ut
.m̂t (13)

ut = β∞2 .vt−1 + (1 − β∞2 ).|gt |
∞ = max(β2.vt−1, |gt |) (14)

7. Nesterov Adaptive Momentum (Nadam) Nadam is the combination of Adam and Nesterov Accelerated Gra-
dient (NAG). It is incorporating Nesterov momentum into Adam [12]. Since Nesterov momentum could achieve
better result than classical momentum, it is hypothesized that Nadam will be better than Adam. The parameter
update at time step t + 1 is computed using equation (15).

θt+1 = θt −
η

√
v̂t t + ε

.(β1.m̂t +
(1 − β1).gt

1 − βt
1

) (15)
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MATERIAL AND METHOD

As much as 391 leaves multispectral images were produced, 80% was reserved as training data, and the rest was
reserved as test data. Multispectral image acquisition was done at optic laboratory Ma Chung Research Center for
Photosynthetic Pigments using Pcopixelfly 14 bit CCD camera with Thorlabs visible bandpass filter. Each multispec-
tral image was consist of 10 channel i.e., 350, 400, 450, 500, 550, 600, 650, 700, 750 and 800 nm. Those images were
then become the input of the system whereas the output were pigments content. The content of three main photo-
synthetic pigments i.e., chlorophyll, carotenoid, and anthocyanin were measured using non-destructive spectrometer
(Ocean Optic USB-4000). The measurement was conducted along with the multispectral image acquisition. A leaf
sample was exposed to light from the tungsten halogen using a probe. The probe captured the reflected light and send-
ing it to the spectrometer. The spectrometer measures the intensity and sends it to the computer for the quantification
and visualization.

Three CNN architectures were used in the experiment. In order to acquire enough information of the optimizers
performance, the three architectures were selected with different level of complexity. Each of the architecture was
experimented using 7 gradient descent-based optimizers (as explained in the previous section), 2 options of the data
batch size (30 and 60), and 3 options of the epoch (15, 30, and 45). Therefore the total number of the experiment is
126. Details of the architectures are as follows:

1. ShallowNet, the architecture consists of 1 convolution layer with 32 filters in size 3x3 and 1 output layer with 5
nodes. Each node in the output utilizes LeakyRelu activation function and represents the pigment indices (Fig.
1). This architecture is the simplest one of the three architectures.

FIGURE 1: ShallowNet architecture

2. LeNet, the architecture consists of 2 convolution layers and 2 fully connected layers. The first convolution layer
consists of 6 filters in size 3x3 with max pooling in size 2x2, and the second convolutional layer consists of
16 filters in size 5x5 with max pooling in size 2x2. The first fully connected layer consist of 120 nodes and
the second fully connected layer consist of 84 nodes. Each node in the output utilizes LeakyRelu activation
function. Figure 2 depicts the LeNet architecture.

FIGURE 2: LeNet architecture

3. AlexNet, the architecture consists of 5 convolution layers and 3 fully connected layers. Detail of the design can
be seen in Table 1 and Fig. 3 depicts the AlexNet architecture.
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TABLE 1: Detail of the AlexNet architecture

Hidden Layer Design

Convolution

1 96 filters in size 11x11 with max pooling in size 3x3
2 256 filters in size 5x5 with max pooling in size 3x3
3 384 filters in size 3x3 without pooling in size 3x3
4 384 filters in size 3x3 without pooling
5 256 filters in size 3x3 with max pooling in size 3x3

Fully Connected
1 4096 nodes with LeakyRelu activation function
2 4096 nodes with LeakyRelu activation function
3 100 nodes with LeakyRelu activation function

FIGURE 3: AlexNet architecture

RESULT AND DISCUSSION

Table 2, 3 and 4 provide the summary of the experiment results. The result of the experiments using batch size 60 was
not shown because it was found that almost all experiments using the batch size 30 produce smaller MSE than using
the batch size 60. Therefore, the result of the experiments using batch size 60 no longer in the discussion. From those
tables, it could be inferred that in sample MSE for all CNN architecture being used is slightly smaller than out sample
MSE. There is also no indication of overfitting occurrence, means that all architecture perform well in learning the
multispectral image-pigment content relationship. The smallest MSE was obtained at LeNet architecture, i.e., 0.003
for the pigments content range -0.2 up to 2.2. In ShallowNet and LeNet, Adam has successfully trained the network,
whereas in AlexNet, Adadelta was the most successful optimizer (notice the grayed-out cell).

TABLE 2: Mean Square Error (MSE) comparison of the seven optimization methods on ShallowNet

E
po

ch Batch Size = 30
In Sample Out Sample

SGD Adagrad Adadelta RMSProp Adam Adamax Nadam SGD Adagrad Adadelta RMSProp Adam Adamax Nadam

15 0.063 0.014 0.516 0.021 0.007 0.563 0.547 0.055 0.014 0.533 0.024 0.009 0.583 0.566
30 0.007 0.342 0.310 0.016 0.005 0.378 0.319 0.012 0.347 0.312 0.019 0.007 0.386 0.322
45 0.052 0.262 0.007 0.047 0.129 0.021 0.223 0.051 0.259 0.012 0.054 0.113 0.032 0.215

TABLE 3: Mean Square Error (MSE) comparison of the seven optimization methods on LeNet

E
po

ch Batch Size = 30
In Sample Out Sample

SGD Adagrad Adadelta RMSProp Adam Adamax Nadam SGD Adagrad Adadelta RMSProp Adam Adamax Nadam

15 0.010 0.010 0.007 0.012 0.015 0.007 0.008 0.013 0.012 0.009 0.013 0.016 0.010 0.010
30 0.009 0.005 0.009 0.007 0.009 0.007 0.006 0.011 0.008 0.011 0.010 0.009 0.010 0.010
45 0.005 0.004 0.006 0.010 0.003 0.007 0.005 0.008 0.009 0.009 0.013 0.008 0.009 0.009

Figure 4 depicts the performance comparison of all optimizer in each architecture. Figure 4(a) shows that in
ShallowNet, SGD, RMSProp, and Adam provide the smallest MSE. Figure 4(b) shows that in LeNet, Adam provides

020020-5



TABLE 4: Mean Square Error (MSE) comparison of the seven optimization methods on AlexNet
E

po
ch Batch Size = 30

In Sample Out Sample
SGD Adagrad Adadelta RMSProp Adam Adamax Nadam SGD Adagrad Adadelta RMSProp Adam Adamax Nadam

15 0.158 0.160 0.009 0.132 0.009 0.161 0.157 0.129 0.132 0.012 0.113 0.012 0.131 0.129
30 0.156 0.160 0.009 0.021 0.156 0.158 0.156 0.129 0.129 0.010 0.023 0.131 0.129 0.131
45 0.044 0.159 0.006 0.060 0.156 0.041 0.159 0.043 0.129 0.009 0.062 0.130 0.040 0.129

the smallest MSE whereas RMSProp provides the biggest MSE. Besides Adam, SGD and Adagrad are also potential
to provide small MSE. Figure 4(c) shows that in AlexNet, Adadelta provides the smallest MSE whereas Adagrad,
Adam, and Nadam provide the biggest MSE. Hence, it could be inferred that each optimizer shows different perfor-
mance across different CNN architectures. This fact complies the general theory which is stated that there is no single
optimizer will perform the best result for all cases [6].

FIGURE 4: Mean Square Error (MSE) comparison for all optimizers in each CNN architecture, (a) ShallowNet; (b)
LeNet; (c) AlexNet

FIGURE 5: Mean Square Error (MSE) comparison for all optimizers in all CNN architecture, (a) In sample MSE; (b)
Out sample MSE

Figure 5 depicts head to head comparison of all optimizers performance in the three architectures. Figure 5(a) is
the comparison for in sample MSE and Fig. 5(b) is the comparison of out sample MSE. It is shown that among the
three architectures, all optimizer consistently provide small MSE on LeNet. Therefore, it is concluded that LeNet is
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the most suitable architecture for representing the multispectral image-pigment content relationship. As shown in Fig.
4 before, Adam should be considered to be used as the optimizer for LeNet.

FIGURE 6: Mean Square Error (MSE) comparison for SGD, Adagrad and Adam in LeNet with increasing number
of the epoch, (a) In sample MSE; (b) Out sample MSE

Figure 6 depicts the further analysis of the potential optimizers for LeNet, i.e., SGD and Adagrad. A number
of the epoch was added to describe its behavior against the possibility of overtraining. As much as 60, 75, 90 and
105 epoch was experimented to train the CNN with SGD, Adagrad, and Adam optimizer. It was shown that all
optimizer did not need much epoch to reach the minimum MSE, indicate that all optimizers could converge very
well. Nevertheless, among the three optimizers, Adam is the most stable one. After the 45th epoch, Adam has the
ability to maintain the small MSE. On the other hand, both SGD and Adagrad failed to do so. The MSE of SGD and
Adagrad have a tendency to increase again after the 45th epoch. Compared to Adagrad, such tendency is worse in
SGD. Therefore, Adam is the best choice for LeNet architecture.

FIGURE 7: Boxplot comparison of MSE result from seven optimizer in three different CNN architectures , (a) In
Sample MSE; (b) Out Sample MSE

From the previous discussion, it is revealed that the combination of CNN architecture and optimization method
is unique for each case. However, from the bunch of our experiment data, it is possible to describe in general the
behavior of each optimizer against different CNN architectures. Figure 7 depicts the boxplot of MSE provides by each
optimizer in all CNN architectures. It is shown that Adam is not the best optimizer among the seven optimizers, it may
result in the smallest MSE, but only with the LeNet architecture. In other architectures, Adam could perform greater
values. The Adadelta and Adamax optimizers seem to work better with different CNN architectures. Therefore, if there
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are limited resources so that several experiments cannot be carried out with different CNN architectures, Adadelta and
Adamax are wise choices to minimize risk.

CONCLUSIONS

It is shown from the experiment that all optimizer show different performance across different CNN architectures.
However, all optimizer perform consistent small MSE on LeNet architecture. Among 7 optimizers, Adam provides
the smallest MSE on the LeNet architecture. Adam also shows the ability to maintain the MSE still low in the next
epoch after it reaches the minimum on a particular epoch. On the other hand, the SGD and Adagrad were failed. If
there are limited resources to run several architectures, Adadelta and Adamax should consider being used to provide
minimal risk. It is shown that the Adadelta and Adamax optimizers consistently produce a small MSE across different
architectures.
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